

Premium On/Off Highway Conventional

Body Builder Book June 2016 Edition PBB-47100

TABLE OF CONTENTS

Preface

Government Requirements: Govt Req

Your Obligations Under The Law	Gov	t Req-1
Federal Motor Vehicle Standards (FMVSS) and		
Canadian Motor Vehicle Safety Standards (CMVSS)	Gov	t Req-3
Additional Lighting Information	Gov	t Req-5
Additional Requirements: EPA	Govt	Req-10
Replacement or Service Parts	Govt	Req-10
Certification of Incomplete Vehicles Manufactured by Navistar, Inc	Govt	Req-11
Alterations to Completed Vehicles	Govt	Req-15
Exterior Noise Certification Label	Govt	Req-18
Additional Certification Label Information and Instructions	Govt	Req-18

Chassis Diagrams: 00

Model HX51F SFA 6x4 S (HX515)	00-1
Model HX61F SBA 6x4 S (HX615)	
Model HX62F SBA 6x4 L (HX620)	
Model HX61Z SBA 8x6 S (HX615)	
Model HX62Z SBA 8x6 L (HX620)	

Frames: 01

Introduction	01-1
General Frame Recommendations	01-1
Identification of Frame Rail Material	01-2
Frame Damage	01-2
Welding and Reinforcement	01-3
Repair and Reinforcement Recommended Procedures	
Bolt and Torque Information	01-20
Special Service Tools	01-29
Aftermarket Modifications	01-32
Wheelbase Alterations	01-34
Frame Rail Cross-Section Specifications	01-35
Frame Rail Reinforcement	01-36

Intermediate Crossmembers - All Models	01-37
Rear Crossmembers - All Models	01-38
Crossmember Locations - 6x4 Models	01-39
Frame Drilling Guidelines	01-40
Frame Height Calculations at Centerline of Front Axle	01-43
Frame Height Data - Front Suspension	01-44
Frame Height Calculations at Centerline of Rear Axle	01-45
Bump Heights - Rear	01-46
Single Axle Frame and Bump Height Data - Rear	01-47
Frame Height Calculations at Front and Rear Rail Ends	01-48
Front Bumper Mounting - All Models	01-49
Front Axles: 02	
Tread	02-1
Brakes: 04	
Air Brake Modifications	04-1
Brake Restrictions	04-2
Brake System Schematic	04-3
Routing Guidelines	04-4
Air-Operated Auxiliary Attachments	
Removal and Insertion Procedures for Tubing in QC or PTC Fittings	
Tube Fitting Installation Instructions	

Exhaust System: 07

Guidelines for Aftertreatment Modifications	07-1
Maximum Backpressure Values	07-6
Backpressure Test Procedure	07-7
Allowable Backpressure Tailpipe Modification Worksheet	07-9
Aftertreatment Diagrams (114 & 119 BBC)	

Air Tank Location (All Models)04-8Air Tank Location (115 BBC)04-9Air Tank Location (114 & 119 BBC)04-11Air Dryer04-15

HX[™] Series Series Body Builder

TABLE OF CONTENTS

JUNE 2016 — TOC-2

Exhaust System	07-19
Electrical: 08 Battery Box Location Roof Mounted Air Horn Location	
Electrical Circuit Diagrams	
Fifth Wheel: 10	
Fifth Wheel Height Calculations Fifth Wheel Mounting Information	
Engine: 12	
Engine Location	
Engine Port Location	
PTO Mounting	12-3
Rear Axles and Rear Suspensions: 14 Rear Axle Tread	1/1
Lift Axles	
Lift Axle Bracket Location	
Rear Suspension Bracket Location & Hole Pattern	
Fuel Tanks: 15	
Single Fuel Tank & Step Locations - SFA (114 BBC)	
Dual Fuel Tank & Step Locations - SFA (114 BBC)	15-7
Single Fuel Tank & Step Locations - SBA (115 BBC)	
Dual Fuel Tank & Step Locations - SBA (115 BBC)	
Single Fuel Tank & Step Locations - SBA (119 BBC)	
Dual Fuel Tank & Step Locations - SBA (119 BBC)	
DEF Tank Location (114 BBC)	
DEF Tank Location (115 BBC)	
DEF Tank Location (119 BBC)	
DEF System and Aftertreatment Information	15-64
Cab: 16	
Cab Dimensions	
Door Swing (with External Air Cleaner)	
Door Swing (without External Air Cleaner)	
Standard Cab Door Schematics	10-4

Standard Cab Left Side View	
Standard Cab Front View	
Standard Cab Top View	16-7
Rear Cab Suspension	
Air Conditioning System Modifications	

PREFACE

FOREWORD

The CT-471 – Body Builder Books are a set of publications of which this Body Builder is a part. The complete set contains information related to the features and specifications for each truck in the International[®] product line.

Disclaimer

The Body Builder Books provide product information to assist those who wish to modify these products for individual applications. Navistar, Inc. does not recommend or approve any firm or party nor make any judgements on the quality of the work performed by a particular firm or party. Individuals who use the services of a Body Builder must satisfy themselves as to the quality of the work.

The party installing a body, a fifth wheel, any other equipment, or making any modifications to complete the vehicle for delivery and make it road-ready is responsible to see that the completed vehicle complies with all applicable certification procedures and safety standards, as may be set forth in federal, state, and local statues, rules and regulations. Specifications, descriptions and illustrative material in this literature are as accurate as known at time of publication but are subject to change without notice. Navistar, Inc. cannot accept responsibility for typographical errors which may have occurred. Illustrations are not always to scale and may include optional equipment and accessories but may not include all standard equipment.

Any changes to the fuel delivery and return system may negatively affect the performance of the engine. Should changes be made the installer should verify that those changes still meet the requirements of the engine for proper system performance. Navistar, Inc. cannot accept responsibility for engine performance issues, error messages, or any other issues caused by changes to the fuel delivery and return system. Please contact Navistar, Inc. for information on the engine requirements for the fuel delivery and return system if needed.

 $\mbox{International}^{\mbox{$\mathbb{8}$}}$ and the $\mbox{International}^{\mbox{$\mathbb{8}$}}$ logotype are registered trademarks of Navistar, Inc.

Engineering Contacts:

Application Engineers

Application Engineers	b			
Curt Studebaker (Manager)	331-332-2718	curt.studebaker@navistar.com	DuraStar TerraStar	
Melissa Gauger (Manager)	331-332-3010	melissa.gauger@navistar.com	WorkStar PayStar	
Jon Agostini	331-332-3774	john.agostini@navistar.com		
Scott Laman	331-332-3997	scott.laman@navistar.com		
Bruce Purvis	331-332-1976	bruce.purvis@navistar.com	DuraStar TerraStar	
Cory Hall	331-332-5573	cory.hall@navistar.com	Terrasia	
Mike Kohrman	331-332-1098	michael.kohrman@navistar.com		
Mark Netzly	331-332-6415	mark.netzly@navistar.com		
Abhi Pamulaparthy	331-332-3463	abhilash.pamulaparthy@ navistar.com	WorkStar PayStar HX	
Jon Wild	331-332-3462	jon.wild@navistar.com		
Vocational Engineers			•	
Paul Nieuwlandt	260-450-4639	paul.nieuwlandt@navistar.com	Vocational	
Brent Bott	331-332-4290	brent.bott@navistar.com	Vocational	
Truck Body Integration	•		•	
Brian Hicks		brian.hicks@navistar.com		
Jay Bissontz		jay.bissontz@navistar.com		
Luis Leon		luis.leon@navistar.com	Diamond Logic®	
Lonny Lipp		lonny.lipp@navistar.com		
Chris Ripco		chris.ripco@navistar.com		

PUBLICATION ORDERING INFORMATION

You can easily order the CT-471 set or any of its components by accessing the Marketing Resource Center and clicking the "Order Brochures" link, using your regular User ID and password.

Revisions to the following product publications are available automatically by subscribing to the Product Information Revision Service. Also, additional copies of product publications can be ordered individually on a one-time basis. When ordering, include the publication number, description and quantity required.

Body Builder Books - Complete Set	CT-471
UC Commercial Bus: Cutaway Bus Chassis Body Builder Book	. PBB-39100
DuraStar[®] Series: Medium Conventional Body Builder Book	. PBB-43100
TerraStar [®] Series: Medium Conventional Body Builder Book	. PBB-44100
PayStar [®] Series: Premium On/Off Highway Conventional Body Builder Book	. PBB-45100
HX[®] Series: Premium On/Off Highway Conventional Body Builder Book	. PBB-47100
WorkStar[®] Series: Medium & Heavy Conventional Body Builder Book	. PBB-50100
Diamond Logic [®] Control Systems	. PBB-71000

GOVERNMENT REQUIREMENTS

Your Obligations Under The Law

The important information in this section will acquaint you with U.S. and Canadian safety and emission standards that apply to Navistar, Inc. (Navistar) vehicles sold in the two countries, of those laws that established these standards, and the identity of the parties responsible for certification of compliance for both **COMPLETE VEHICLES** and **INCOMPLETE VEHICLES**. To the best of Navistar's knowledge, it is correct as of the date of this printing. Navistar, however cannot accept responsibility for its completeness and currency. User must ascertain this on their own. This section is written specifically for trucks with a Gross Vehicle Weight Rating (GVWR) greater than 10,000 lbs. (4,536 kg).

The National Traffic and Motor Vehicle Safety Act of 1966, in the U.S., gave rise to the Federal Motor Vehicle Safety Standards (FMVSS). In addition, The Environmental Protection Agency (EPA), through the Environmental Policy Act of 1969, set forth environmental protection standards.

In Canada, the Motor Vehicle Safety Act of 1970 established the Canadian Motor Vehicle Safety Standards (CMVSS) Act and Environment Canada establishes environmental protection standards.

These standards place the responsibility for compliance of a **COMPLETE VEHICLE** on the vehicle and engine manufacturers. Any vehicle purchased from Navistar, as a **COMPLETE VEHICLE**, as defined by section 568.3 of Title 49 of the Code of Federal Regulations (CFR) is certified by Navistar to comply with all applicable safety standards provided modifications or additions to the vehicle do not result in non-compliance with applicable U.S. and Canadian standards to which Navistar has certified compliance. The Engine Manufacturer is responsible to certify the engine to the U.S. EPA and Environment Canada's standards.

It is the responsibility of every International dealer to assure that the service work or modifications that can affect compliance, performed on a new vehicle prior to delivery to the customer, meets the requirements specified by all mandated standards. It is the responsibility of the Final-Stage Manufacturer who typically installs a body, a fifth wheel, or any other equipment, or makes any modifications to an **INCOMPLETE VEHICLE** supplied by Navistar, to certify compliance with the applicable standards for the vehicle when completed. Further, it is the responsibility of the Final-Stage Manufacturer to determine, and fully comply with, any additional requirements of the several States and Provinces. In addition, the Final-Stage Manufacturer must certify compliance with any other standards set forth in U.S. and Canadian regulations, statutes and ordinances.

Penalties For Violations

Violation of the provisions contained within the U.S. Federal Motor Vehicle Safety Standards is subject to fines of up to \$5,000 per vehicle or up to a maximum of \$15,000,000. The following violations are subject to these penalties:

- 1. Any manufacturer who knowingly or unknowingly produces for sale a motor vehicle subject to the law, but which does not meet all the applicable provisions of the law.
- 2. Any party who sells or offers for sale a motor vehicle built after the effective date of a standard, which in the knowledge of the selling party does not comply with the standard.
- 3. Any party (manufacturer, dealer, body builder or other) who completes a vehicle for sale in compliance with the law but fails to certify the completed vehicle in

the prescribed manner.

4. Any party who knowingly certifies a vehicle as complying, which does not in fact meet the requirements of the law.

Situations where the government was intentionally misled in regards to safety related defects are criminal violations and are punishable by a maximum of 15 years in prison.

The U.S. Department of Transportation has declared its intent to institute procedures periodically to inspect vehicles subject to the law, and to implement enforcement procedures that will permit detection of violations.

The requirements of the law are stringent and the penalties for violation are severe. It is therefore mandatory that all personnel involved in any of the following aspects of motor vehicles become familiar with the provisions of the law as they relate to their responsibilities.

- Installation of equipment sub-assemblies and/or bodies (Intermediate and Final Stage Manufacturer)
- Sales
- Preparation for delivery
- Modification or conversion (Alterer)
- Maintenance and repair

Violation of the Canada Motor Vehicle Safety Standards law carries similar penalties.

NOTE: The Canadian, Mexican, and U.S. vehicle standards, which regulate the manufacture of vehicles for sale in their respective countries, may at any time exceed all or a portion of the mandated requirements of one or both of the other two countries. This situation exists due to established standards or regulatory revisions in one country, which have not yet been incorporated by the other(s).

Each of these countries require that any vehicle crossing its border(s) in commerce must comply with all applicable standards of their country and comply with the standards that were in effect as of the date of manufacture of that vehicle.

Federal Motor Vehicle Standards (FMVSS) and Canadian Motor Vehicle Safety Standards (CMVSS)

The following standards of Title 49 of the CFR apply to Trucks having a GVWR greater than 10,000 pounds (4,536 kg.). Presently, all International[®] trucks fall in this classification.

For any vehicle manufactured by and purchased from Navistar and defined by section 567.3 of Title 49 of the CFR as an Incomplete Vehicle, consult the Incomplete Vehicle Document (IVD) provided with each Incomplete Vehicle to determine those particular safety standards with which the vehicle complies. Any standards, with which Navistar cannot certify compliance because of the level of completion of that vehicle, become the responsibility of the Intermediate Manufacture or Final-Stage Manufacture or both.

SAFETY STANDARD IDENTIFICATION (Applicable to all completed vehicles greater than 10,000 LBS.)					
MVSS 101, CMVSS 101 Controls, Telltales, and Indicators					
FMVSS 102, CMVSS 102	Transmission Shift Position Sequence, Starter Interlock and Transmission Braking Effect				
FMVSS 103, CMVSS 103	Windshield Defrosting and Defogging Systems				
FMVSS 104, CMVSS 104	Windshield Wiping and Washing Systems				
FMVSS 105, CMVSS 105	Hydraulic and Electric Brake Systems				
FMVSS 106, CMVSS 106	Brake Hoses				
FMVSS 108, CMVSS 108	Lamps, Reflective Devices and Associated Equipment				
FMVSS 111, CMVSS 111 Rearview Mirrors					
FMVSS 113, CMVSS 113 Hood Latch System					
U.S. 49 CFR part 565, CMVSS 115 Vehicle Identification Number Requirements					
FMVSS 116, CMVSS 116 Motor Vehicle Brake Fluids					
FMVSS 119, CMVSS 119 New Pneumatic Tires for Vehicles other than passenger cars					
FMVSS 120, CMVSS 120	Tire selection and Rims for vehicles with a GVWR of more than 4,536 Kilograms (10,000 pounds)				
FMVSS 121, CMVSS 121 Air Brake Systems					
FMVSS 124, CMVSS 124 Acceleration Control Systems					
FMVSS 125	Warning Devices				
FMVSS 205, CMVSS 205 Glazing Materials					
	* N/A – Not Applicable				

Table 1.1

* N/A – Not Applicable

SAFETY STANDARD IDENTIFICATION

(Applicable to all completed vehicles greater than 10,000 LBS.)

	Developing the Developing Detection Operation		
FMVSS 206, CMVSS 206	Door Locks and Door Retention Components		
FMVSS 207, CMVSS 207	Seating Systems		
FMVSS 208, CMVSS 208	Occupant Crash Protection		
FMVSS 209, CMVSS 209	Seat Belt Assemblies		
FMVSS 210, CMVSS 210	Seat Belt Assembly Anchorages		
FMVSS 213, CMVSS 213	Child Restraint Systems		
FMVSS 302, CMVSS 302	Flammability of Interior Materials		
FMVSS 403 Platform Lift Systems for Motor Vehicles			
FMVSS 404	Platform Lift Installations in Motor Vehicles		
CMVSS 301.1	LPG Fuel System Integrity		
CMVSS 301.2	CNG Fuel System Integrity		
FMVSS 304	CNG Fuel Container		
CMVSS 1106	Noise Emissions		

* N/A – Not Applicable

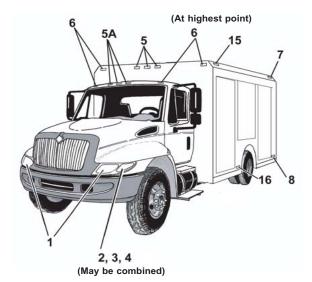
Additional Lighting Information

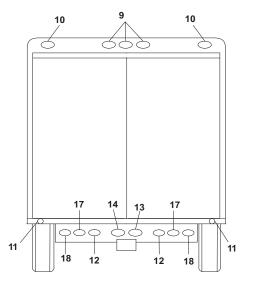
Lighting Devices and Reflectors Required by FMVSS 108 and CMVSS 108

Table 1.2

Required Vehicle Lighting Equipment for Trucks with an Overall Width of 80 Inches or More

REQUIRED LIGHTING EQUIPMENT	QTY	COLOR	LOCATION	POSITION	HEIGHT ABOVE ROAD SURFACE (In inches measured from the center of the lamp on vehicle at curb height.)
Headlamps (Lower Beam)	2 minimum	White	Forward road illumination	On the front, symmetrical, as far apart as practicable (if 4 lamp system, outboard or above upper beams)	Not less than 22 or more than 54.
Headlamps (Upper Beam)	2 minimum	White	Forward road illumination	On the front, symmetrical (if 4 lamp system, inboard or below lower beams)	Not less than 22 or more than 54.
Daytime Running Lamps - Attention: for Canada required, for US optional	2 minimum	White or Yellow	Indicate in-use vehicle	Front, symmetrical, as far apart as practicable	380 mm (15) minimum. Maximum depends on type of DRL.
Turn signal (Front)	2	Amber	At or near front	One on each side of the vertical centerline at the same height and as far apart as practicable.	Not less than 15 or more than 83.
Identification Lamp (Front)	3	Amber	Front	As close as practicable to the vertical centerline of the vehicle or the vertical centerline of the cab where different from the centerline of the vehicle.	All three on same level as close as practicable to the top of the vehicle with lamp centers spaced not less than 6 inches or more than 12 inches apart.
Tail Lamp	2	Red	Rear	One lamp each side of the vertical centerline at the same height and as far apart as practicable.	Both on the same level between 15 and 72.
Stop Lamp	2	Red	Rear	One lamp each side of the vertical centerline at the same height and as far apart as practicable.	Both on the same level between 15 and 72.
Front Clearance Lamps	2	Amber	One on each side of front	One on each side of the vertical centerline to indicate width.	Both on the same level as high as practicable.
Rear Clearance Lamps	2	Red	One on each side of rear	One on each side of the vertical centerline to indicate overall width.	Both on the same level as high as practicable.
Side Marker Lamp, Intermediate	2	Amber	One on each side	At or near midpoint between front and rear side marker lamps, if vehicle over 30' in length.	Not less than 15.
Reflex Reflector Intermediate (Side)	2	Amber	One on each side	At or near midpoint between front and rear side reflectors if over 30' in length.	Between 15 and 60.
Reflex Reflector (Rear)	2	Red	Rear	One on each side of vertical centerline, as far apart as practicable.	Both on the same level, between 15 and 60.


HX[™] Series Series Body Builder


GOVERNMENT REQUIREMENTS

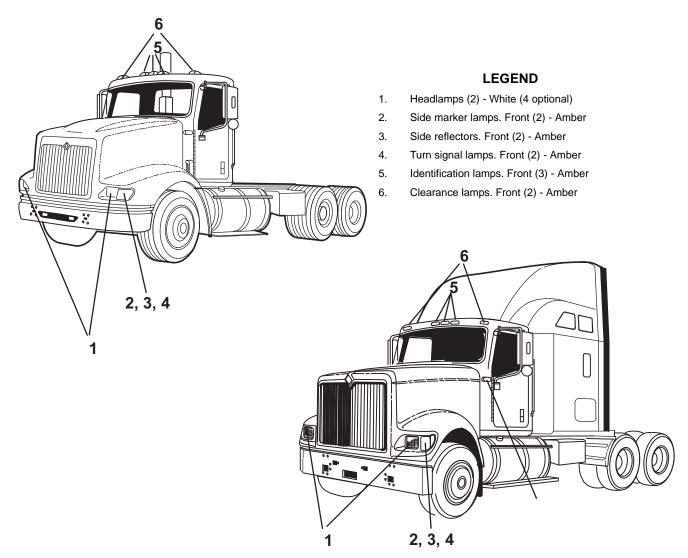
HX[™] Series Series Body Builder

REQUIRED LIGHTING EQUIPMENT	QTY	COLOR	LOCATION	POSITION	HEIGHT ABOVE ROAD SURFACE (In inches measured from the center of the lamp on vehicle at curb height.)
Reflex Reflector (Rear Side)	2	Red	One on each side (rear)	As far to the rear as practicable.	Between 15 and 60.
Reflex Reflector (Front Side)	2	Amber	One on each side (front)	As far to the front as practicable.	Between 15 and 60.
License Plate Lamp Rear	1	White	At rear license plate	To illuminate the license plate from the top or sides.	No requirements.
Side Marker Lamp (Front)	2	Amber	One on each side	As far to the front as practicable.	Not less than 15.
Side Marker Lamp (Rear)	2	Red	One on each side	As far to the rear as practicable.	Not less than 15.
Turn Signal (Rear)	2	Amber or Red	Rear	One lamp on each side of the vertical centerline as far apart as practicable.	Both on the same level, between 15 and 83.
Identification Lamp (Rear)	3	Red	Rear	One as close as practicable to vertical centerline. One on each side.	All three on the same level as close as practicable to the top of the vehicles with lamp centers spaced not less than 6" or more than 12" apart.
Vehicular Hazard Warning Flashing Lamps	2	Amber	Front	One lamp on each side of vertical centerline as far apart as practicable.	Both on the same level, between 15 and 83.
	2	Amber or Red	Rear		
Backup Lamp	1	White	Rear	Rear	No requirement.
Rear Upper Body Marking (Tractor)	exactly 2 pairs of 300mm long strips	White	Rear	Rear upper corners of cab, facing rearward	As high as practicable excluding fairings
Rear Marking (Tractor)	Exactly 2 sections, minimum 600mm each	Red/White	Rear	Rear, facing rearward, on fenders, on mud flap brackets, or within 300mm below the top of mud flaps	As horizontal as practicable and not higher than 1,525 mm from the ground

(Figures 1.1, 1.2 and 1.3 for Illustration Purposes Only)

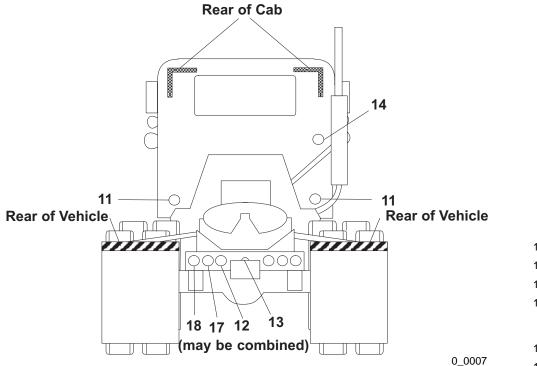
LEGEND

- 1. Headlamps (2) White (4 optional)
- 2. Side marker lamps. Front (2) Amber
- 3. Side reflectors. Front (2) Amber
- 4. Turn signal lamps. Front (2) Amber
- 4a. Turn signal lamps. Front (2) Amber (Optional location)
- 5. Identification lamps. Front (3) Amber
- 5a. Identification lamps. Front (3) Amber (Optional location)
- 6. Clearance lamps. Front (2) Amber
- 7. Side marker lamps. Rear (2) Red
- 8. Side reflectors. Rear (2) Red
- 9. Identification lamps. Rear (3) Red
- 10. Clearance lamps. Rear (2) Red
- 11. Reflectors Rear (2) Red
- 12. Stop lamps. Rear (2) Red
- 13. License plate lamp. Rear (1) White
- 14. Backup lamp. Rear (1) White (location optional provided optional requirements are met)
- 15. Side marker lamps. Intermediate (2) Amber (if vehicle is 30' or more overall length)
- 16. Side reflectors. Intermediate (2) Amber (if vehicle is 30' or more overall length)
- 17. Turn signal lamps. Rear (2) Amber or Red
- 18. Tail lamps. Rear (2) Red



(Figures 1.1, 1.2 and 1.3 for Illustration Purposes Only)

0_0004


JUNE 2016 — GOVT REQ-7

JUNE 2016 — GOVT REQ-8

(Figures 1.1, 1.2 and 1.3 for Illustration Purposes Only)

LEGEND

- 11. Reflectors. Rear (2) Red
- 12. Stop lamps. Rear (2) Red
- 13. License plate lamp. Rear (1) White
- Backup lamp. Rear (1) White (location optional provided optional requirements are met)
- 17. Turn signal lamps. Rear (2) Amber or Red
- 18. Tail lamps. Rear (2) Red

Figure 1.3

Additional Requirements: EPA

EPA Part 205 Subpart B, CMVSS 1106 – Noise Emission For Medium And Heavy Trucks

INCOMPLETE VEHICLES identified as a CHASSIS CAB by Navistar, and all COMPLETE VEHICLES will comply with the requirements specified by EPA PART 205 SUBPART B and CMVSS 1106 provided that no changes are made to the noise generating and/or suppression equipment installed by Navistar.

EPA Part 86, CMVSS 1100 – Emission Control

Engines provided with International vehicles will comply with all applicable exhaust emission standards. Modifications to the vehicle and/or engine, which will cause noncompliance, are prohibited by the regulations. For further information see the vehicle operator's manual and the engine manual.

EPA Part 86, CFR 1037 – Vehicle Emission Controls

Vehicles manufactured by Navistar have been built to comply with all applicable vehicle emissions standards. Modifications to the vehicle which will cause noncompliance are prohibited by regulations. Refer to the Vehicle Emissions Control Information label on the vehicle for a list of Emissions reduction components. For further information, please review the vehicle operator's manual.

Replacement or Service Parts

The Motor Vehicle Safety Standards primarily specify the requirements and/or performance standards that a Complete Vehicle must comply with. However, certain specific components of the vehicle, when sold by a dealer or distributor as replacement or service parts, are required to comply with the requirements and/or performance standards specified by the standards. Certification of compliance must also be provided for these components and those items that are subject to these procedures are as follows:

- Windshield and window glass FMVSS/CMVSS 205
- Seat belts FMVSS/CMVSS 209
- Hydraulic brake hose FMVSS/CMVSS 106
- Hydraulic brake fluids FMVSS/CMVSS 116
- Lamps and reflective devices FMVSS/CMVSS 108
- Warning devices FMVSS 125 (Reflective Triangle)
- Tires and Wheels FMVSS/CMVSS 119/120
- Platform Lift System FMVSS 403

The standards require that all of the above items manufactured for sale, whether for use in the manufacture of a vehicle or for sale as parts, must comply with applicable provisions of the safety standards. Such items when sold by dealers or distributors must be labeled to certify compliance. Such labeling may be placed on the part itself or on the container in which the part is shipped.

The items listed above that are manufactured by or for Navistar, Inc. as service parts will comply with all applicable standards as required.

Certification of Incomplete Vehicles Manufactured by Navistar, Inc.

In accordance with the laws of the United States and Canada all vehicles manufactured for sale and sold for use in these countries must comply with the applicable federal safety standards and certification of compliance must be provided with the vehicle.

Section 567.3 of Title 49 of the CFR defines an **INCOMPLETE VEHICLE** as an assemblage consisting, at a minimum, of chassis (including the frame) structure, power train, steering system, suspension system, and braking system, in the state that those systems are to be part of the completed vehicle, but requires further manufacturing operations, to become a completed vehicle. For an **INCOMPLETE VEHICLE** manufactured by Navistar to be classified as a **COMPLETE VEHICLE**, subsequent manufactures must mount a body or other load carrying equipment on the chassis prior to delivery to the end user so that it can perform its intended function.

Incomplete Vehicle Manufacturer

DEFINITION

Section 567.3 of Title 49 of the CFR defines an Incomplete Vehicle Manufacturer as a person who manufactures an incomplete vehicle by assembling components none of which, taken separately, constitute an incomplete vehicle.

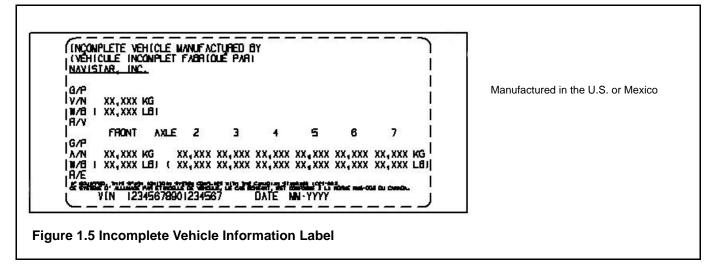
Compliance Responsibility

As manufactured by Navistar, an Incomplete Vehicle is built with all appropriate safety items that comply with the applicable regulatory requirements to the extent that the vehicle's state of completion will permit. To obtain a Complete Vehicle status under section 567.3 of Title 49 of the CFR, an Intermediate or Final-Stage Manufacturer must mount a body or other similar load carrying equipment on the chassis prior to delivery to the end user.

Navistar identifies an **INCOMPLETE VEHICLE** with one of the following designations depending on the vehicle's state of completion:

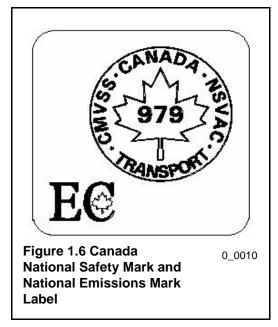
- Chassis Cab
- Flat Back Cowl (FBC) Chassis Bus or School Bus
- Partial Cab Bus or School Bus
- Partial Cab Truck
- Stripped Chassis

In accordance with section 568.4 of Title 49 of the CFR, Navistar furnishes an **INCOMPLETE VEHICLE** Document (IVD) with each **INCOMPLETE VEHICLE**. This document provides the following information:


- Name and mailing address of the INCOMPLETE VEHICLE manufacturer
- Date of manufacture
- Vehicle Identification Number

- GAWR (Gross Axle Weight Rating) for each axle of the intended COMPLETE VEHICLE
- GVWR (Gross Vehicle Weight Rating) of the intended COMPLETE VEHICLE
- Vehicle Type into which the INCOMPLETE VEHICLE may appropriately be manufactured
- Suitable tire and rim choice with inflation pressure
- List of all Federal U.S. or Canadian safety standards applicable to the type of vehicle.

(Those standards to which the vehicle complies as produced by Navistar, Inc. will be identified.)


For all Incomplete Vehicles except those without a cab, the IVD is placed in the left hand door dispatch compartment. For Incomplete Vehicles without a cab, the IVD is placed in a clear plastic envelope and strap locked to the radiator stay rod.

In accordance with section 567.5 of Title 49 of the CFR, Navistar will also affix an Incomplete Vehicle Information Label to the hinge pillar, door latch post, or door edge that meets the door latch post, next to the driver's seating position (Figure 1.5).

CANADA

All International Incomplete Vehicles manufactured and sold in Canada will also have a Canada National Safety Mark and National Emissions Mark affixed to the vehicle (Figure 1.6).

Intermediate Manufacturer

DEFINITION

Section 567.3 of Title 49 of the CFR defines an INTERMEDIATE MANUFACTURER as a person, other than the Incomplete Vehicle Manufacturer or Final Stage Manufacturer, who performs manufacturing operations on a vehicle manufactured in two or more stages.

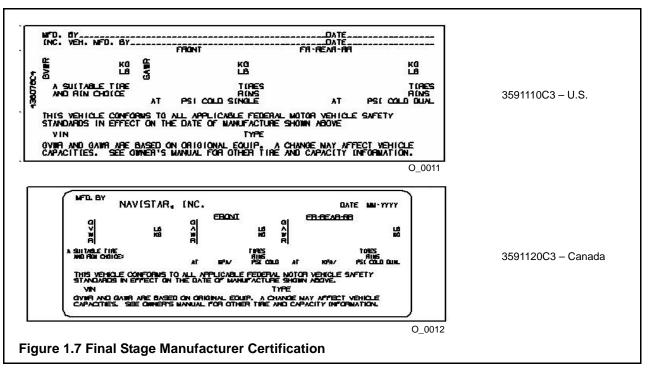
COMPLIANCE RESPONSIBILITY

In accordance with section 568.4 of Title 49 of the CFR, Navistar furnishes an Incomplete Vehicle Document (IVD) with each incomplete vehicle. Navistar will also affix an information label to the hinge pillar, door latch post, or door edge that meets the door latch post, next to the drivers seating position as specified in part 567.5 of Title 49 of the CFR.

In accordance with section 568.5 of Title 49 of the CFR each intermediate manufacturer is required to provide an addendum to the IVD for any modification made by them to the incomplete vehicle that affects the validity of the compliance statements that appear in the IVD. The addendum must provide the name and mailing address of the intermediate manufacturer and specify the changes that must be made to the IVD to reflect the modifications that they made to the vehicle.

Final Stage Manufacturer

DEFINITION


As defined by section 567.3 of Title 49 of the CFR, a FINAL – STAGE MANUFACTURER is a person who performs such manufacturing operations on an incomplete vehicle that it becomes a complete vehicle.

COMPLIANCE RESPONSIBILITY

Section 568.6 of Title 49 of the CFR requires that the final – stage manufacturer shall complete the vehicle in such manner that it meets all applicable safety standards in effect on the date of manufacture of the incomplete vehicle, the date of final completion, or a date between these dates. It should be noted that a vehicle intended for use as a tractor, is not considered a complete vehicle until the fifth wheel has been installed. When completed, the tractor must comply with all applicable Federal Motor Vehicle Safety Standards. Section 567.5 of Title 49 of the CFR stipulates that the Final Stage Manufacturer is responsible for installing an appropriate certification label that must be securely and permanently affixed to the completed vehicle.

For those situations when an entity other than a Navistar facility certifies a completed vehicle, that entity becomes the Final – Stage Manufacturer and has the option to create its own label or purchase a label from International service parts. Labels purchased from service parts do not have the name of the Final - Stage Manufacturer and information about the vehicle. This information has been left blank. Final – Stage Manufacturers that utilize the appropriate label and protective cover (435654C2) and provide the required information comply with the requirements specified by part 567 of Title 49 of the CFR. The label

(Figure 1.7) is referred to as a "Final Stage Manufacturer Certification Label" and is identified with Navistar part number 3591119C3 for a vehicle sold in the U.S. or 3591120C3 for a vehicle sold in Canada.

CANADA

Certified Final – Stage Manufacturers of Canadian vehicles may be required to affix the Canada National Safety Mark and National Emissions Mark with their identification number installed on it next to the final certification label shown above. Such authorization and identification number must be obtained from the Minister of Transport at Transport Canada. (Figure 1.6 – "Canada National Safety Mark and National Emissions Mark.)

Alterations to Completed Vehicles

DEFINITION

Section 567.3 of Title 49 of the CFR defines an Altered Vehicle as a completed vehicle previously certified in accordance with section 567.4 or 567.5 that has been altered other than by the addition, substitution, or removal of readily attachable components or by minor finishing operations, before the first purchase of the vehicle other than for resale, in such a manner as may affect the conformity of the vehicle with one or more FMVSS or the validity of the vehicle's stated weight ratings or vehicle type classification.

COMPLIANCE RESPONSIBILITY

In accordance with section 567.7 of Title 49 of the CFR, if a person alters a certified vehicle before the first purchase of the vehicle other than for resale, the responsibility for compliance of the modified vehicle rests with the Alterer. The vehicle manufacturer's Certification Label and any Information Labels shall remain affixed to the vehicle and the alterer shall affix an additional certification label that will supplement the certification label originally furnished with the vehicle by Navistar or the Final – Stage Manufacturer. This certification label must state the following:

"This vehicle was altered by (name of Alterer) in (month and year in which alterations were completed) and as altered it conforms to all applicable Federal Motor Vehicle Safety Bumper and Theft Prevention Standards affected by the alteration and in effect on the date of (no earlier than the date of manufacture of the certified vehicle as specified on the certification label and no later than the date alterations were completed)."

This label (Figure 1.8) is available from International service parts under Part No. 449893C5 for U.S. Certified Vehicles and Part No.1676840C3 for Canada Certified Vehicles. Protective cover 435654C2 should be installed over this label.

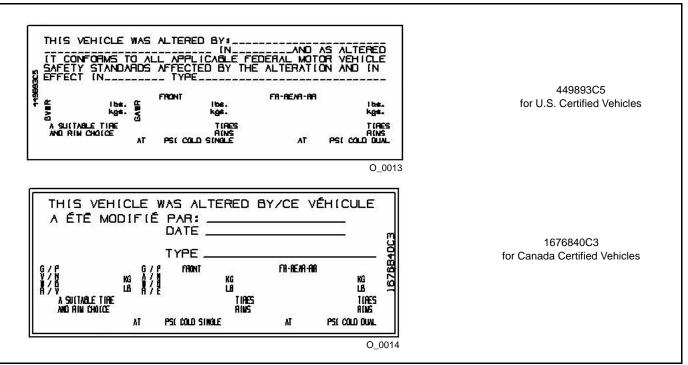
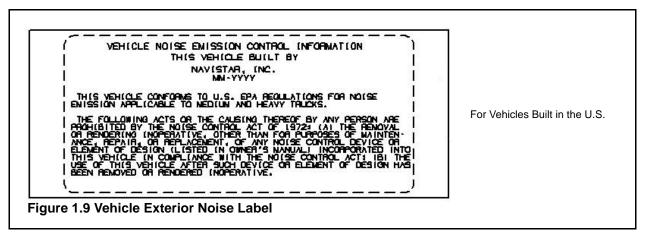
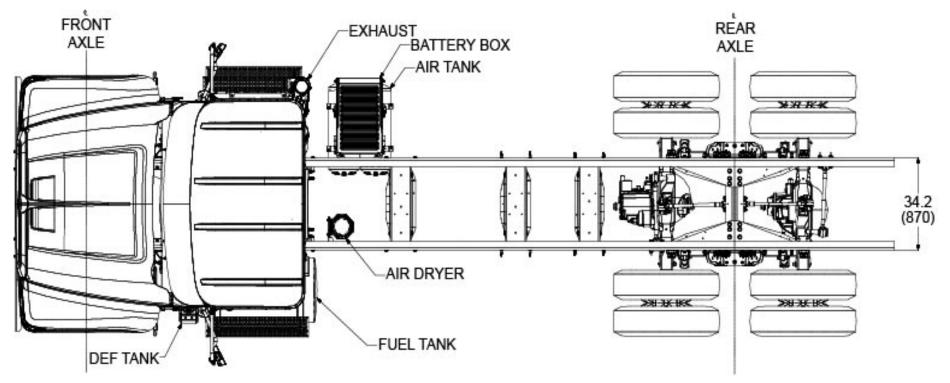



Figure 1.8 Vehicle Alterer Certification Label

Alterers of Canadian certified vehicles must apply the Canada National Safety Mark and National Emissions Mark, with their identification number, adjacent to the Vehicle Alterer Certification label. Such authorization and identification number must be obtained from the Minister of Transport at Transport Canada. (Figure 1.6 – Canada National Safety Mark and National Emissions Mark.)

Exterior Noise Certification Label

Incomplete vehicles identified as chassis cabs by Navistar have the vehicle exterior noise label (Figure 1.9) permanently attached in a readily visible position in the operators compartment. For incomplete vehicles other than a chassis cab, the final stage manufacturer must assume responsibility and comply with EPA PART 205 SUBPART B, CMVSS 1106 – NOISE EMISSION FOR MEDIUM AND HEAVY TRUCKS.

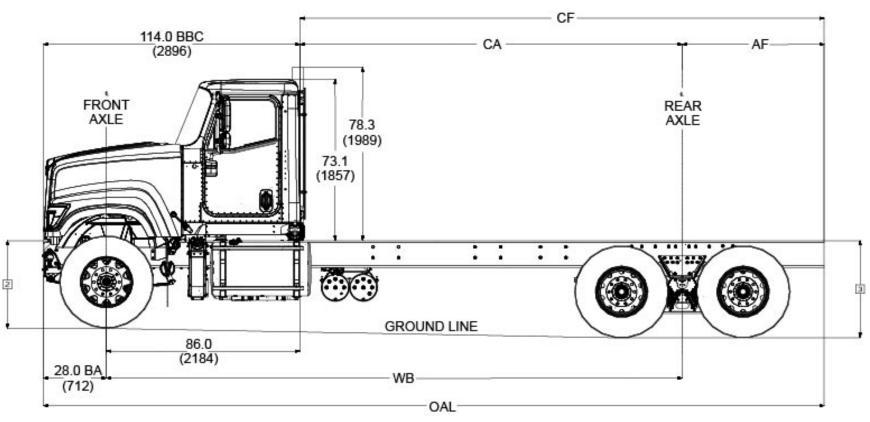

Additional Certification Label Information and Instructions

- 1. All labels must be fully filled out.
- 2. All labels must be affixed to the vehicle in accordance with Sections 567 of Title 49 of the CFR or Canadian Motor Vehicle Safety Regulations, Sections 6 and 7.
- 3. No label shall be installed over another label.
- 4. It is unlawful to affix an incorrect certification label to a vehicle.

CHASSIS DIAGRAMS

Model HX515 SFA 6x4 (HX51F)

Plan View – Standard Cab


HX51F_HX515_plan

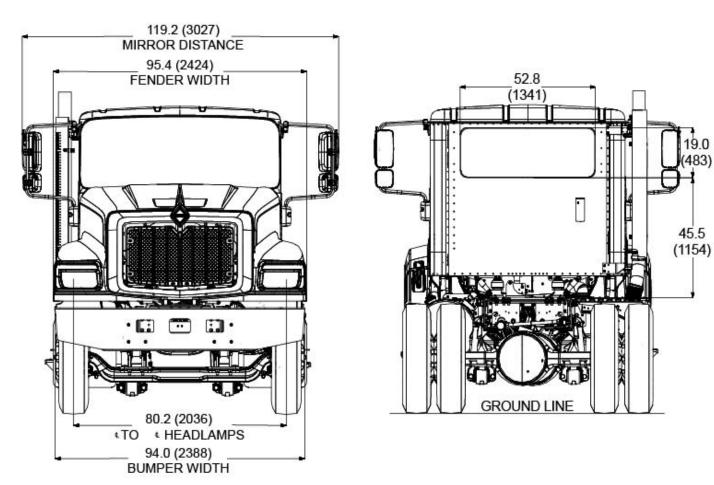
NOTE: This drawing *should not* be used to determine crossmember location – this information can be found later in this book.

CHASSIS DIAGRAMS • 00 MODEL HX515 SFA 6x4 (HX51F)

Model HX515 SFA 6x4 (HX51F)

Side View - Standard Cab

HX51F_HX515_left

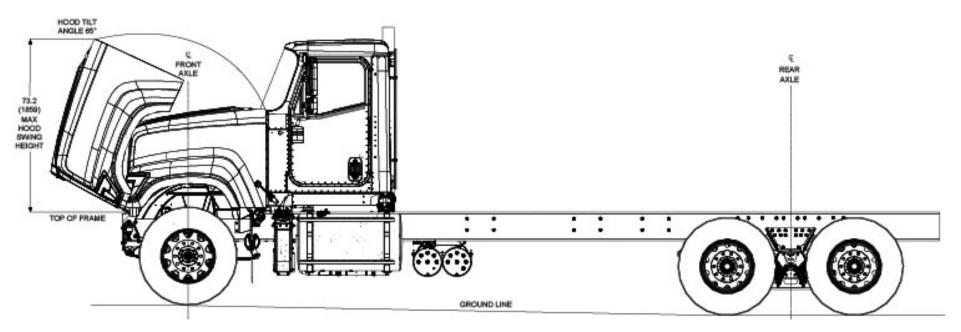

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.

[2] Frame Height at centerline of front axle: unloaded - 37.85", loaded - 35.92"

- [3] Frame Height at centerline of rear axle: unloaded 42.75", loaded 40.85"
- NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

Model HX515 SFA 6x4 (HX51F)

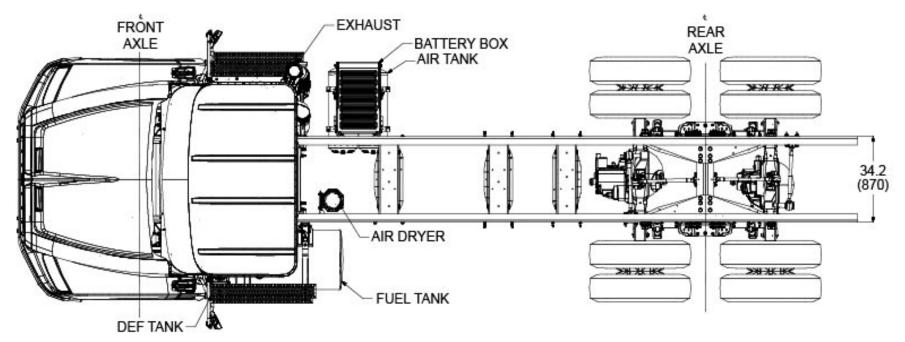
Front and Rear View - Standard Cab



HX_front_back_114BBC

19.0 483)

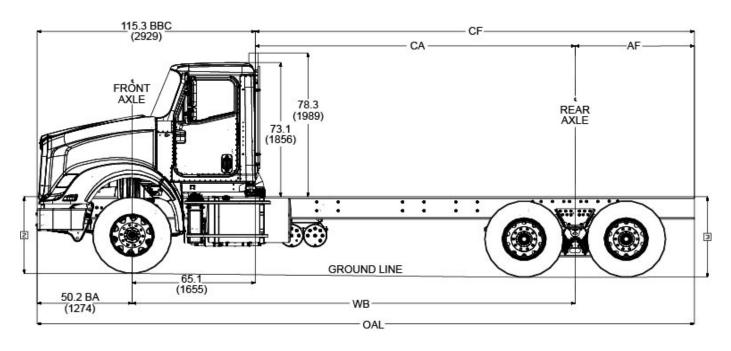
Model HX515 SFA 6x4 (HX51F)


Hood Tilt - Standard Cab

HX51F_HX515_hood_tilt

Model HX615 SBA 6x4 (HX61F)

Plan View – Standard Cab

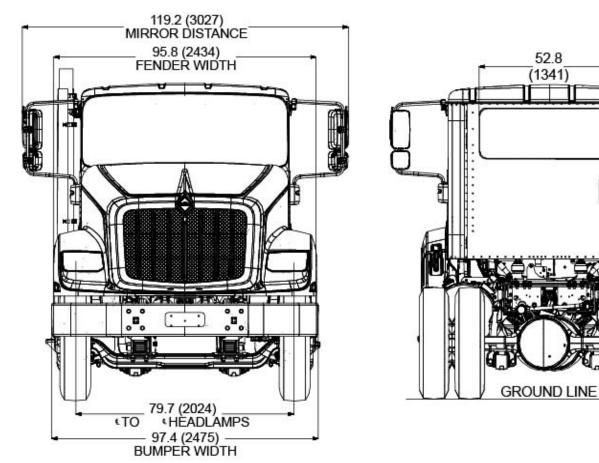

HX61F_HX615_plan

NOTE: This drawing *should not* be used to determine crossmember location – this information can be found later in this book.

CHASSIS DIAGRAMS • 00 MODEL HX615 SBA 6x4 (HX61F)

Model HX615 SBA 6x4 (HX61F)

Side View - Standard Cab


HX61F_HX615_left

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.

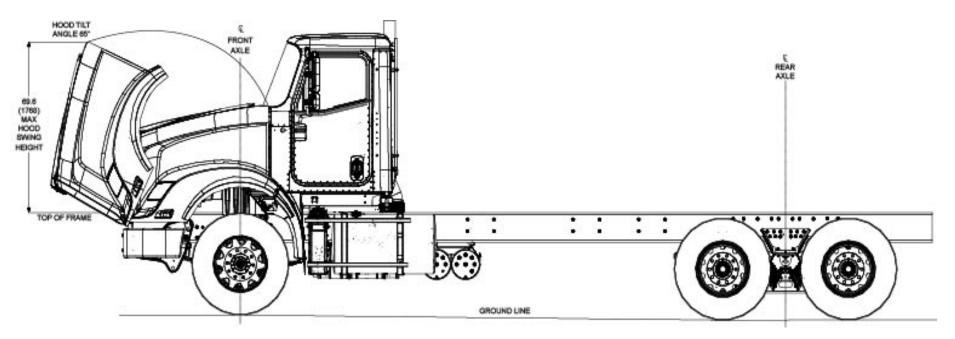
- [2] Frame Height at centerline of front axle: unloaded 40.40", loaded 38.73"
- [3] Frame Height at centerline of rear axle: unloaded 42.75", loaded 40.85"
- NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

Model HX615 SBA 6x4 (HX61F)

Front and Rear View - Standard Cab

HX_front_back_115_119BBC

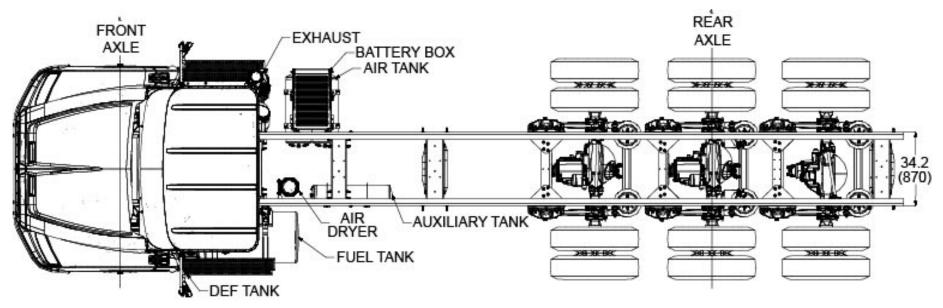
19.0 (483)


45.5 (1154)

N X N

CHASSIS DIAGRAMS • 00 MODEL HX615 SBA 6x4 (HX61F) JUNE 2016 - 00-7

Model HX615 SBA 6x4 (HX61F)

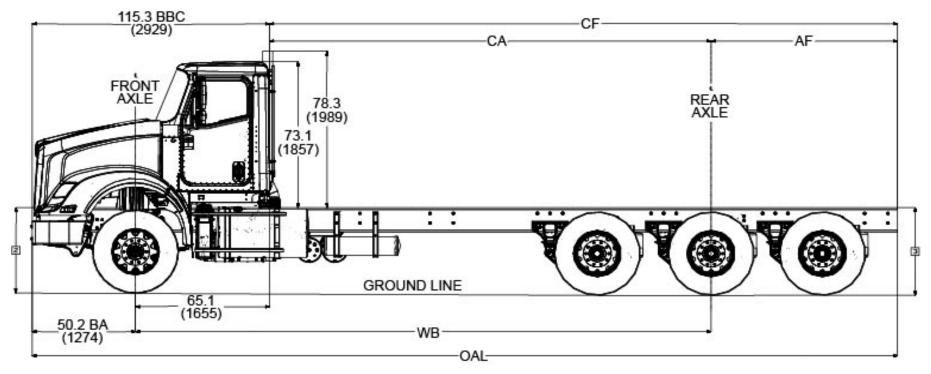

Hood Tilt - Standard Cab

HX61F_HX615_hood_tilt

Model HX615 SBA 8x6 (HX61Z)

Plan View – Standard Cab

HX61Z_HX15_plan


NOTE: This drawing *should not* be used to determine crossmember location – this information can be found later in this book.

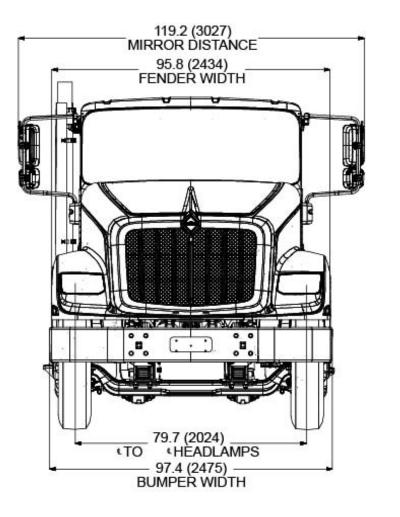
HX[™] SERIES SERIES BODY BUILDER

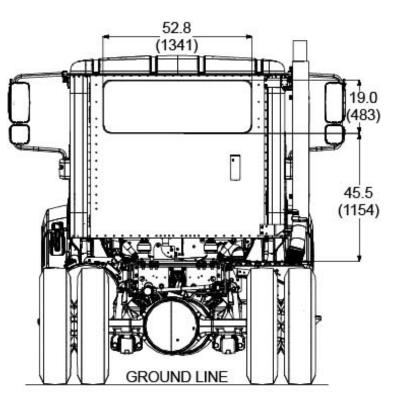
CHASSIS DIAGRAMS • 00 MODEL HX615 SBA 8x6 (HX61Z)

Model HX615 SBA 8x6 (HX61Z)

Side View - Standard Cab

HX61Z_HX615_left

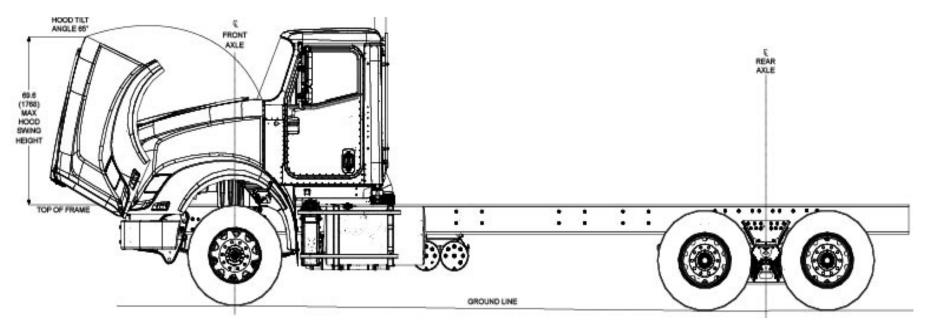

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.


[2] Frame Height at centerline of front axle: unloaded - 40.64", loaded - 39.07"

- [3] Frame Height at centerline of rear axle: unloaded 42.35", loaded 41.45"
- NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

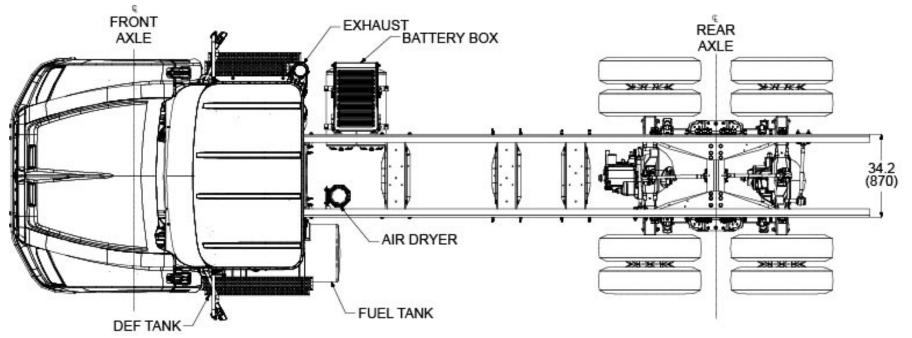
Model HX615 SBA 8x6 (HX61Z)

Front and Rear View - Standard Cab



HX_front_back_115_119BBC

Model HX615 SBA 8x6 (HX61Z)

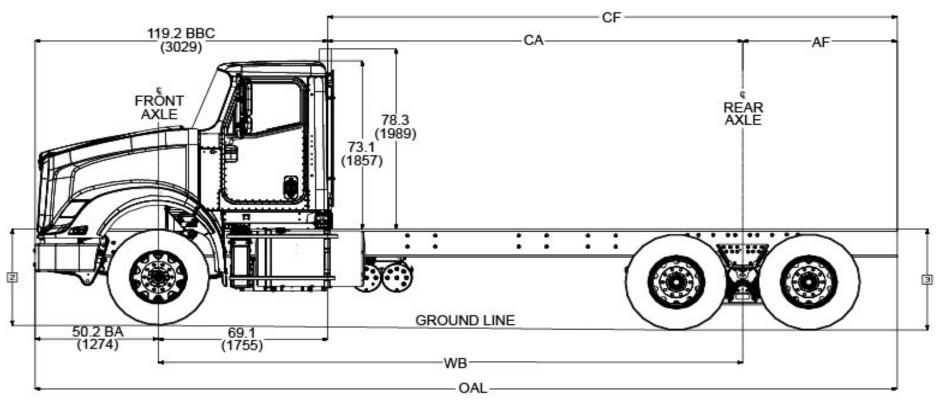

Hood Tilt - Standard Cab

HX61Z_HX615_hood_tilt

Model HX620 SBA 6x4 (HX62F)

Plan View – Standard Cab

HX62F_HX620_plan


NOTE: This drawing *should not* be used to determine crossmember location – this information can be found later in this book.

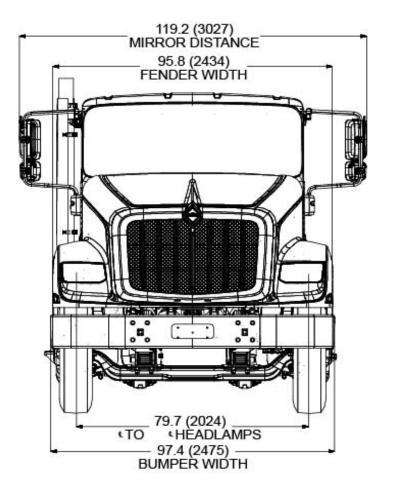
HX[™] SERIES SERIES BODY BUILDER

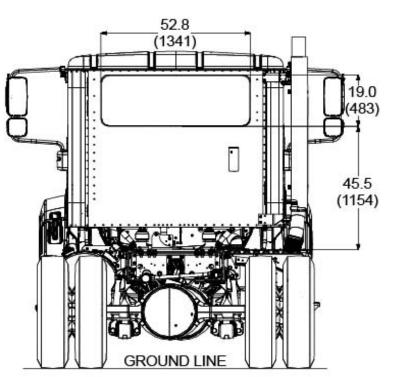
CHASSIS DIAGRAMS • 00 MODEL HX620 SBA 6x4 (HX62F)

Model HX620 SBA 6x4 (HX62F)

Side View - Standard Cab

HX62F_HX620_left

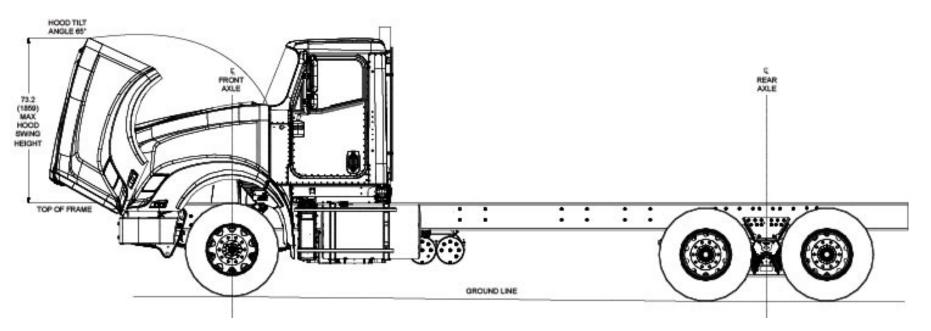

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.


[2] Frame Height at centerline of front axle: unloaded - 40.40", loaded - 38.73"

- [3] Frame Height at centerline of rear axle: unloaded 42.75", loaded 40.85"
- NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

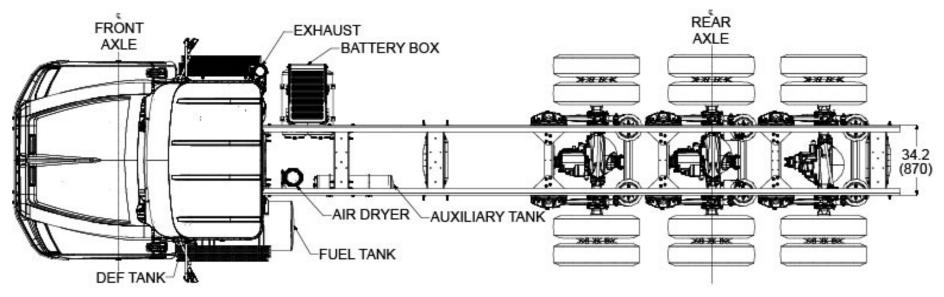
Model HX620 SBA 6x4 (HX62F)

Front and Rear View - Standard Cab



HX_front_back_115_119BBC

Model HX620 SBA 6x4 (HX62F)

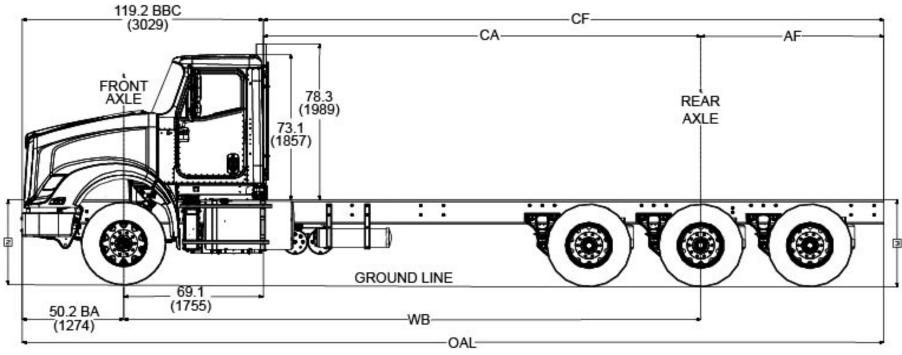

Hood Tilt - Standard Cab

HX62F_HX620_hood_tilt

Model HX620 SBA 8x6 (HX62Z)

Plan View – Standard Cab

HX62Z_HX620_plan


NOTE: This drawing should not be used to determine crossmember location - this information can be found later in this book.

HX[™] SERIES SERIES BODY BUILDER

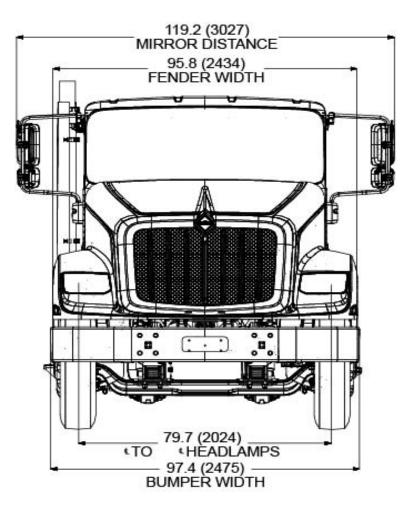
CHASSIS DIAGRAMS • 00 MODEL HX620 SBA 8x6 (HX62Z)

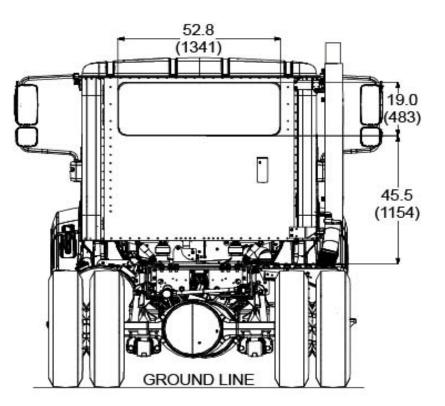
Model HX620 SBA 8x6 (HZ62Z)

Side View - Standard Cab

HX62Z_HX620_left

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.

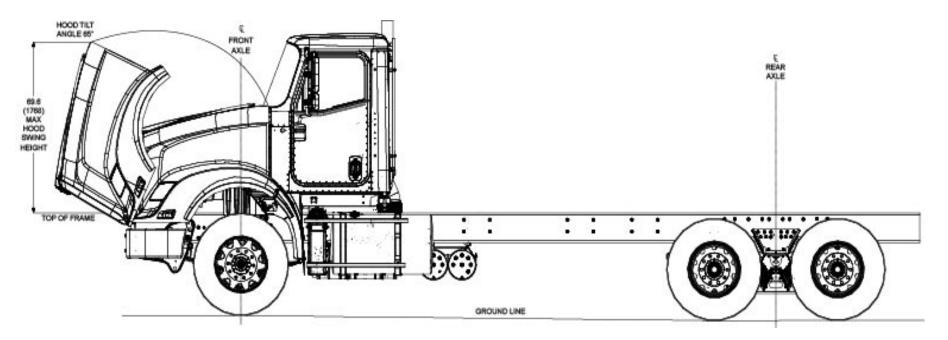

[2] Frame Height at centerline of front axle: unloaded - 40.74", loaded - 39.07"


[3] Frame Height at centerline of rear axle: unloaded - 42.35", loaded - 41.45"

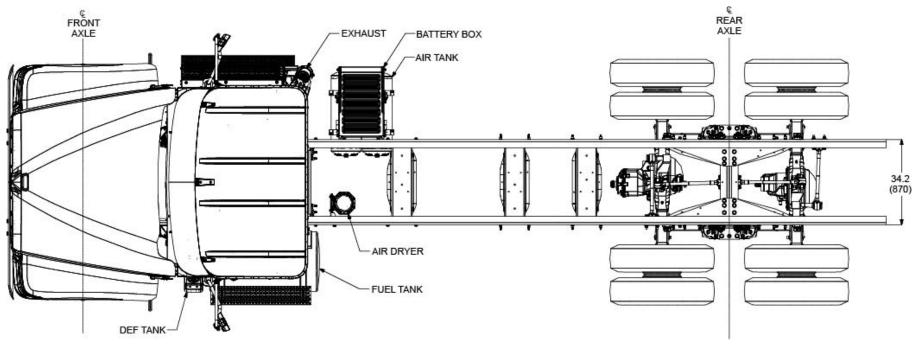
NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

Model HX620 SBA 8x6 (HZ62Z)

Front and Rear View - Standard Cab



HX_front_back_115_119BBC

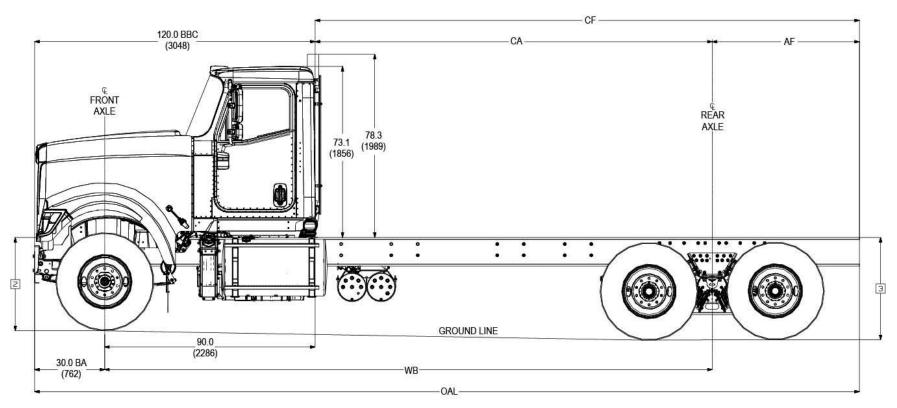

Model HX620 SBA 8x6 (HZ62Z)

Hood Tilt - Standard Cab

HX62Z_HX620_hood_tilt

Model HX520 SFA 6x4 (HX52F) Plan View – Standard Cab

HX52F_HX520_plan


NOTE: This drawing *should not* be used to determine crossmember location – this information can be found later in this book.

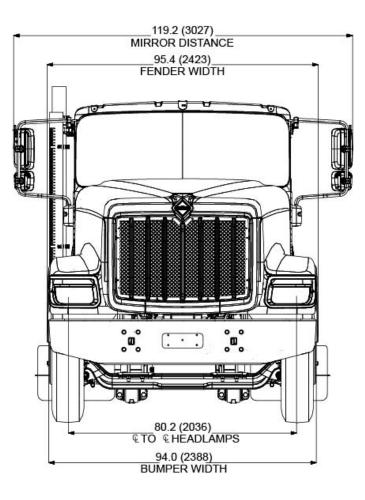
HX[™] SERIES SERIES BODY BUILDER

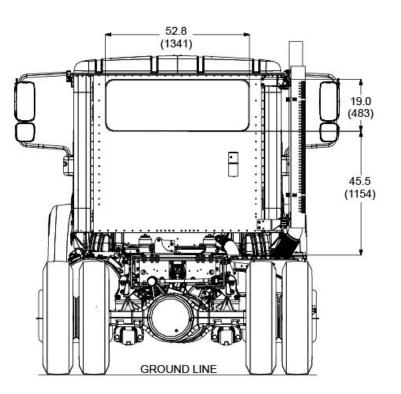
CHASSIS DIAGRAMS • 00 MODEL HX520 SFA 6x4 (HX52F)

HX520 SFA 6x4 (HX52F)

Side View - Standard Cab

HX52F_HX520_left

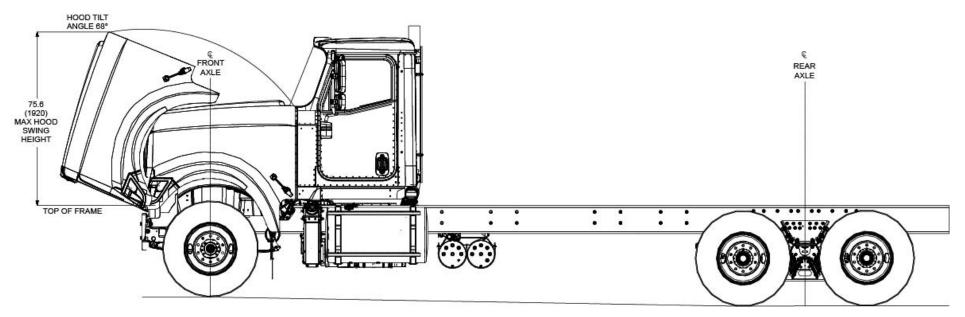

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.


[2] Frame Height at centerline of front axle: unloaded - NOT AVAILABLE AT TIME OF PUBLICATION.

- [3] Frame Height at centerline of rear axle: unloaded NOT AVAILABLE AT TIME OF PUBLICATION.
- NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

Model HX520 SFA 6x4 (HX52F)

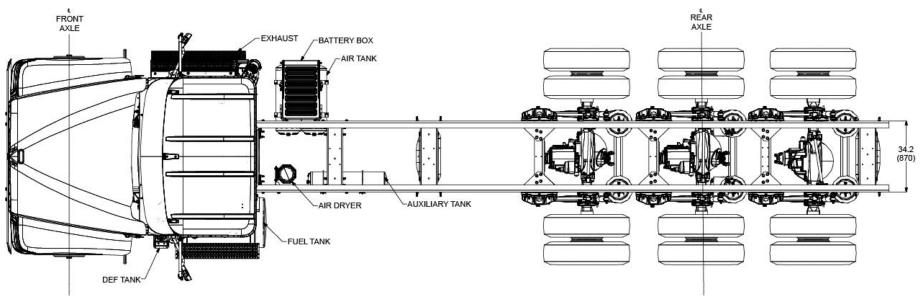
Front and Rear View - Standard Cab



HX_front_back_120BBC

CHASSIS DIAGRAMS • 00 MODEL HX520 SFA 6x4 (HX52F)

Model HX520 SFA 6x4 (HX52F)

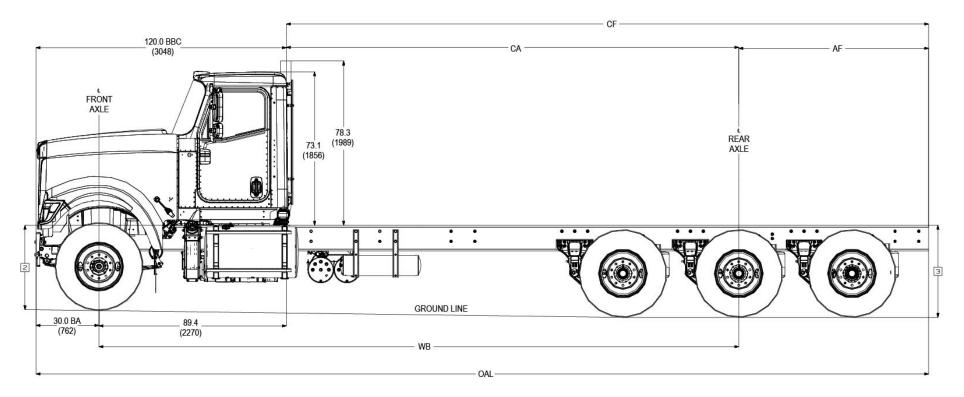

Hood Tilt - Standard Cab

HX52F_HX520_hood_tilt

Model HX520 SBA 8x6 (HX52Z)

Plan View – Standard Cab

HX52Z_HX520_plan


NOTE: This drawing should not be used to determine crossmember location - this information can be found later in this book.

HX[™] SERIES SERIES BODY BUILDER

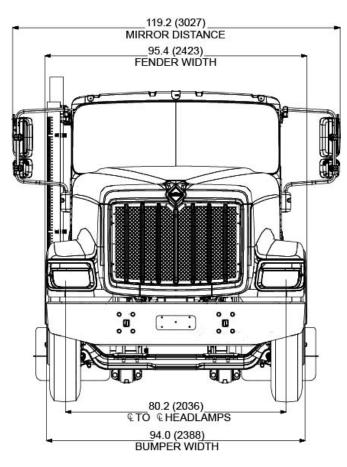
CHASSIS DIAGRAMS • 00 MODEL HX520 SBA 8x6 (HX52Z)

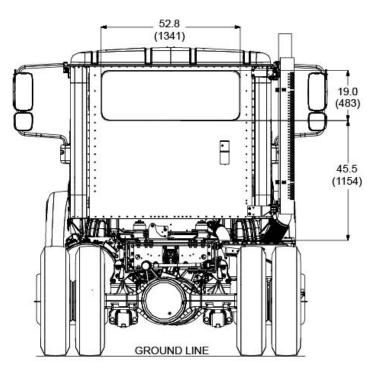
Model HX520 SBA 8x6 (HX52Z)

Side View - Standard Cab

HX52Z_HX520_left

Frame height values represent standard equipment and are intended for reference only. To compute actual frame height, refer to the frame height calculation section.

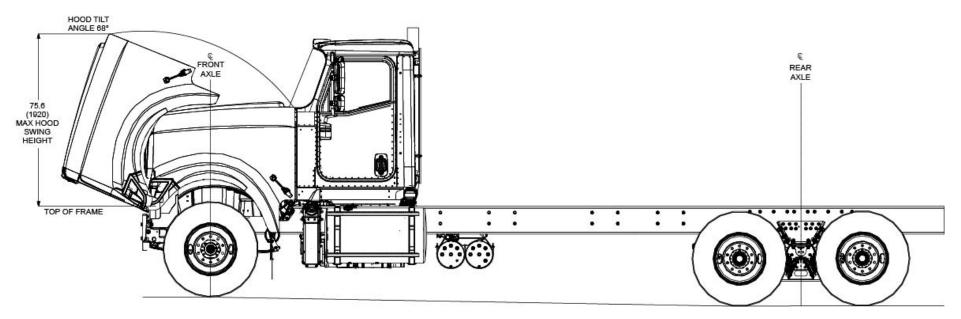

[2] Frame Height at centerline of front axle: unloaded - NOT AVAILABLE AT TIME OF PUBLICATION.


[3] Frame Height at centerline of rear axle: unloaded - NOT AVAILABLE AT TIME OF PUBLICATION.

NOTE: Due to internal spring friction and manufacturing tolerances, these values may vary up to 0.5 inches. To achieve these nominal values directly after loading or unloading a vehicle, it may be necessary to drive the vehicle for a short period.

Model HX520 SBA 8x6 (HX52Z)

Front and Rear View - Standard Cab



HX_front_back_120BBC

CHASSIS DIAGRAMS • 00

Model HX520 SBA 8x6 (HX52Z)

Hood Tilt - Standard Cab

HX52Z_HX520_hood_tilt

FRAMES

Introduction

The frame is the structure that carries and supports the rated load under anticipated driving conditions and secures the major components of a vehicle in their relative positions. The frame assembly consists of two sidemembers and depending upon the length of the frame, five or more crossmembers.

General Frame Recommendations

It is very important that the frame be inspected periodically for cracks, buckling, crossmember loosening or other damage that may cause eventual failure of the frame. Additional inspections should be made whenever the chassis has been overloaded or involved in an accident. An alignment check IS NOT SUFFICIENT since local cracks, crossmember loosening or sidemember buckling will not necessarily cause misalignment.

On reinforced sidemember sections, when cracks exist in either of the sidemember sections, the members must be separated for repair. After separation follow the procedures for non-reinforced sections. The two sidemember sections MUST NOT be welded together. After the weld repairs, the sections should be reinforced with the appropriate section and re-assembled with mounting bolts tightened to SAE Grade 8 torque levels.

Drilling or Notching

Sidemembers should not be drilled or notched without approval from Navistar Engineering. Do not exceed the maximum allowable sidemember hole size in the unrestricted zones. See model specific books for illustrations.

Welding or Flame Cutting

Welding or flame cutting of the frame components is unacceptable because of the associated loss of fatigue strength. This restriction applies not only to the heat-treated components, but also the high strength low alloy (HSLA) and low carbon steel components.

Exceptions to this are cases with Navistar Engineering approval or for repair operations as described in this service manual section.

To avoid serious personal injury, death or possible engine damage, when welding or using an acetylene torch always wear welding goggles and gloves. Insure that acetylene and oxygen tanks are separated by a metal shield and are chained to a cart. Do not weld or heat areas near fuel tanks or fuel lines. Utilize proper shielding around hydraulic lines.

FRAMES • 01 IDENTIFICATION OF FRAME RAIL MATERIAL

Reinforcement to Increase Capacity

Reinforcement of the chassis frame to support either additional loading or concentrated loading does not increase vehicle load carrying capacity unless it has been fully verified that all other vehicle components, such as the brake system, steering system, suspension system, etc. can properly and safely support the increased loading.

Increase in Local Stress

In any modification of the chassis frame, the addition of holes, reinforcements, welds, clamps, splices, etc., may cause an increase in the local stress in the frame at the point of the modification, THEREFORE CAUSING A STRESS CONCENTRATION IN THE FRAME SIDEMEMBER(S).

These local stress concentrations can significantly affect the life of the chassis frame. The specific effect which the stress concentration will have on the life of the chassis frame is influenced by its location, the frequency and severity of the loading, and the magnitude of stress concentration.

Deviation from the repair procedures in this section may void manufacturer's warranty.

Identification of Frame Rail Material

International® chassis are manufactured with frame rails of different alloy steels and some are heat-treated. Each material must be handled in a specific manner to assure maximum service life; therefore, the frame material must be determined before attempting repair or modification.

International chassis are presently manufactured with frame rails of:

- High strength low alloy (HSLA) steel (50,000, 60,000 and 80,000 PSI yield strength)
- Heat treated steel (110,000 and 120,000 psi yield strength).

Each type has different repair procedures. The frame rail material can be determined by inspecting the frame and consulting the dealer vehicle lineset ticket and the sales data book.

Heat-treated rails are marked on the inside of the section with a decal which cautions against welding, flame cutting or the addition of holes in critical zones. These practices are restricted for all frame rails, however, **HEAT-TREATED** rails are much more sensitive to these alterations.

Frame Damage

The major sources of frame damage are accidents, overloading the vehicle, and local overstressing due to a variety of causes. In accident cases, the reasons for the damage are readily apparent. Such damage may often be repaired by:

- Straightening and reinforcing the frame.
- Repairing the damaged area and reinforcing the frame sidemember.
- Replacing the frame sidemembers and crossmembers.

Damage to the chassis frame, such as a crack in the frame sidemember or crossmember, which is not associated with impact damage, may be an indication of overloading the vehicle. Damage to the chassis frame may also be an indication of the creation of locally high stresses due to operating conditions or equipment mounting practices. Examples of overloading are:

1. Exceeding either the gross vehicle weight rating (GVWR) or the gross axle weight rating (GAWR) (loading the frame beyond its design capacity).

- 2. Uneven load distribution.
- 3. Improper fifth wheel settings.
- 4. Using the vehicle in operating conditions or with equipment it was not designed for.

Examples of creation of locally high stresses are:

- 1. Mounting bodies or equipment in a manner that causes stress concentrations and/or abrasive wear in either the flange or web portion of the sidemember.
- 2. Improper modification or repair of frame components.
- 3. Equipment which is susceptible to resonant vibration due to excess flexibility of its mounting.

Frame damage may also be caused by corrosion resulting from the contact between dissimilar metals.

Damage to the chassis frame, which is not associated with impact damage, should not be repaired until the cause of the damage has been determined and corrective actions taken to prevent re-occurrence of the non-impact damage.

Welding and Reinforcement

The guidelines below deal with the general procedures for weld repair and reinforcement. Because of the many variables associated with these repairs, it is recommended that your field service representative be consulted prior to undertaking the repair. This will also help to determine whether a specific set of recommendations has already been developed for the case in question.

The essential elements of repairing the sidemembers are the restoring of BOTH the shape and local strength so that the load capacity is at least as good as before the damage occurred. The sidemembers may *look* like new, but may have local strength reduction due to small cracks or material strength reduction. Even if the frame has acceptable alignment and there is no gross deformation, local deformations may reduce the strength in the area to be weld repaired. Examples of this are local bulges in the web (vertical portion) of the section and buckling of the flanges. These local deformations must be repaired by straightening before proceeding with the weld repair.

HX[™] Series Series Body Builder

FRAMES • 01 Welding and Reinforcement

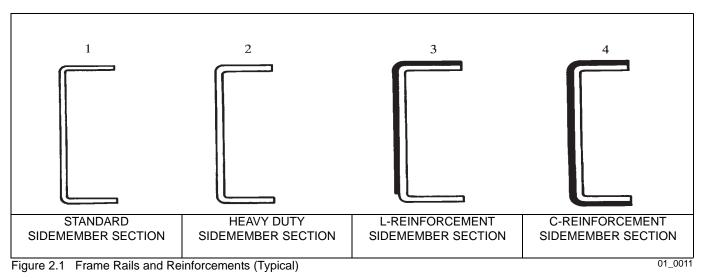
Welding Precautions

When welding on any vehicle, care must be taken to prevent damage to the electronic components. Vehicles with ELECTRONIC ENGINE CONTROL SYSTEMS require additional precautions.

CAUTION: On any vehicle, disconnect both the positive and negative battery cables from the battery before welding on the vehicle. Attach the welder ground cable as close as possible to the part being welded.

With an electronic engine controller (such as Celect), do not connect the ground cable to the control module(s) or the cooling plate. To protect the control module(s), it is mandatory to remove all connectors going to the control modules.

The following is a general guideline for the steel frames:


Welding of the HSLA (50,000, 60,000 and 80,000 PSI yield strength) steel side member and the heat-treated (110,000 and 120,000 PSI yield strength) steel sidemember involves a significant reduction in the strength of the frame in the heat affected zones of the weldment. This means that the frame in the welded region is no longer capable of carrying the same load or stress as the original section.

To restore the strength of the frame rails after welding, the welded area must be reinforced using reinforcements as indicated in "Repair and Reinforcement Recommended Procedures".

Welding must be done properly to make an effective repair. Therefore, only those who are properly trained and qualified should perform the welding repairs in this section.

Reinforcement

Reinforcements (Figure 2.1) to increase load capacity are generally "full length". The actual length of the reinforcement varies with the model. Shorter, (approximately 7') rear suspension tandem liner reinforcements are available for some tractor models. Inverted "L" and "C" channel reinforcements are available for most models. For models which do not have reinforcements, it is necessary to contact Sales Engineering to obtain reinforcement recommendations.

These reinforcements are generally installed on the outside of the sidemember, although certain models require "C" channel reinforcements installed to the inside of the sidemember. Contact your International[®] Truck dealer regarding the required type of reinforcement.

Depending on model application, there will be other parts affected, such as spring brackets for example, which are bolted to the flange as well as the web of the sidemember. To maintain proper alignment of the springs, these brackets may require replacement with new brackets designed to accept the reinforcements. These brackets are available through your International Truck dealer parts department.

When an inside reinforcement is added, the lengths of the crossmembers will be affected.

FRAMES • 01 Welding and Reinforcement

Reinforcement Attachment

THE REINFORCEMENTS MUST NEVER BE WELDED TO THE ORIGINAL CHASSIS SIDEMEMBERS. High strength SAE Grade 8 bolts are to be used to fasten the reinforcement to the sidemember. Existing bolt holes in the sidemembers should be used whenever possible.

The reinforcements should be bolted to the chassis frame using high strength SAE Grade 8 bolts not less than 0.5 inch (13 mm) in diameter (refer to "Bolt and Torque Information").

Corrosion

If aluminum and steel are allowed to come into direct contact with each other, a galvanic cell can be formed. In order for the cell to form, the dissimilar metals must be in direct contact and an electrolyte, such as moisture, must be present. Aluminum is anodic with respect to steel and will corrode when in the presence of steel. Corrosion of aluminum frame crossmembers will reduce the load carrying capacity of the frame member and may eventually lead to the failure of the frame.

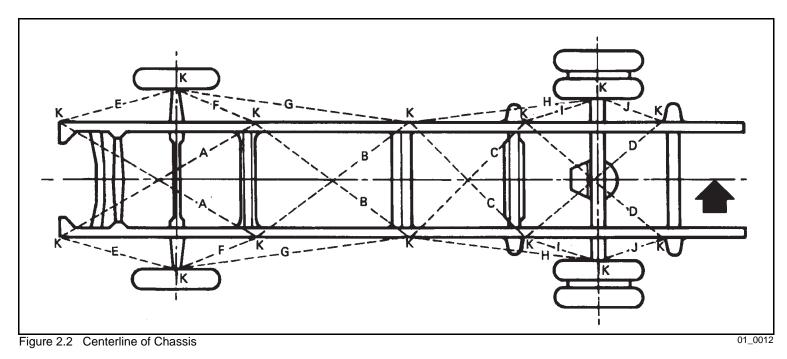
To prevent the formation of a galvanic cell, isolation techniques such as non-conductive or barrier type spacers or sealers must be used so that the steel and aluminum are not in direct contact.

It is recommended that a sealer, such as Tectyl 400C or equivalent, be painted onto the surface of both the aluminum and steel, as well as on the washers under the head of the bolts and nuts.

Frame Alignment

The frame must be properly aligned as this affects body, axle and suspension mounting. If the vehicle has been involved in an accident or has been overloaded, it is recommended that the frame be checked for proper alignment.

Pre-Alignment Inspection


Before checking alignment, park vehicle on level ground and set parking brake. Inspect frame assembly for loose parts, welds, cracks and bends. Be sure to make all necessary repairs before attempting to check frame alignment.

Method of Checking Frame Alignment

A satisfactory method of checking the frame and axle alignment, particularly when a body and cab is on a chassis, is to:

1. Place a plumb bob against the point of measurement. All measurements must be taken with the plumb bob positioned against bare metal.

2. Tack or tape pieces of paper to the floor directly under each point of measurement on the chassis as indicated by the letter "K" in Figure 2.2.

Method of Checking

After each measurement point has been carefully marked on the floor, proceed as follows:

1. Locate centerline of chassis by measuring front and rear end widths, using marks on floor.

If frame widths are within specification, draw centerline on floor, the full length of the chassis and continue with step 2.

If frame widths are out of specification, lay out centerline as follows:

Centerline can be drawn through the intersection of any one pair of equal diagonals (A-A, B-B, C-C, D-D) and center point of one end of frame or through points of intersection of any two pairs of equal diagonals.

2. Measure distance from centerline to opposite points marked over entire length of frame. Measurements should not vary more than 0.12 inch (3.0 mm) at any point.

HX[™] SERIES SERIES BODY BUILDER

FRAMES • 01 Welding and Reinforcement

If the diagonals are not within specification, try loosening and re-tightening all cross-members. Then re-check alignment. Refer to the "Bolt Torque Chart (Phosphate and Oil Coated)". If frame is still out of alignment, the vehicle must be taken to a suitable frame alignment establishment to confirm frame misalignment. If misalignment is confirmed, suitable measures must be taken to repair the damage.

SIDE ELEVATION DIMENSIONS

Dimensions for side elevation of the frame should be checked at the points indicated and should not vary more than 0.12 inch (3.0 mm) from side to side. (They will differ fore and aft due to typical frame rake.)

Axle Alignment With Frame

After determining that the frame is properly aligned, the axle alignment with the frame should be checked by comparing diagonals.

If necessary, adjust axle-to-frame alignment.

Frame Straightening

Frame straightening should only be performed by a qualified frame alignment facility. Under no circumstance should frame alignment be performed by inexperienced or unqualified service personnel.

Do not use heat to straighten.

Use of heat is not recommended when straightening heat-treated frame sidemembers. Heat will weaken these frame members, consequently, all straightening should be done at room temperature. Add reinforcement per section if heat straightening is done.

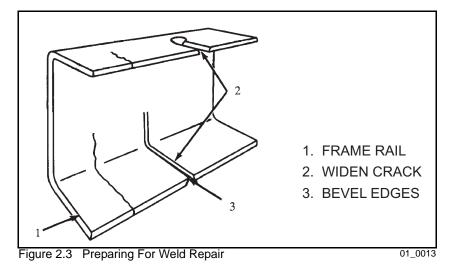
Frame members which are bent or buckled sufficiently to show cracks or weakness after straightening should be replaced or reinforced. **HEAT-TREATED FRAME MEMBERS MUST NOT BE INTERMIXED WITH NON-HEAT-TREATED MEMBERS.**

If one sidemember is to be replaced, the new member must match the former frame member in both cross-section and material strength.

Repair and Reinforcement Recommended Procedures

In some cases of frame damage, the sidemembers must be replaced rather than repaired. Examples of this are:

- 1. When sidemember cracks caused complete separation or a visible deformation of the section.
- 2. When the sidemembers are extensively deformed. Consult with your field service representative and frame repair specialists if in doubt.


Preparation of Frame for Repair

Bevel Crack to Weld

To assure complete weld penetration, bevel the crack from one side when welding from one side. Bevel the crack from both sides when welding from both sides. The existing crack in the sidemember must be entirely removed (Figure 2.3). Widen the crack its full length to 1/8 inch (3 mm). If required, a rubber backed disc grinder or high speed steel burr may be used.

Clean Surface to Weld

Surfaces to be welded and surfaces adjacent to the weld must be free of loose scale, slag, rust, grease, moisture, paint or other material that could contribute to poor quality welds.

HX[™] SERIES SERIES BODY BUILDER

FRAMES • 01

JUNE 2016 — 01-10

REPAIR AND REINFORCEMENT RECOMMENDED PROCEDURES

Welding

Electric arc-welding is recommended for repair of steel frames. The shielded arc method should be used because the heat generated during welding is localized and burning of material is minimized using this method. Additional advantages are that the finished weld can be ground flush and drilled as necessary.

Shielded metal arc welding (SMAW); gas metal arc welding (GMAW), also known as metal inert gas (MIG) welding; gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding; or flux cored arc welding (FCAW) are recommended methods for repair of steel frame members.

To avoid serious personal injury, death or possible engine damage, when welding or using an acetylene torch always wear welding goggles and gloves. Insure that acetylene and oxygen tanks are separated by a metal shield and are chained to a cart. Do not weld or heat areas near fuel tanks or fuel lines. Utilize proper shielding around hydraulic lines.

General Recommendations

IMPORTANT: To properly perform the repair procedure, the following rules must be observed:

All Steel Sidemembers

1. Welding should not be performed when surfaces are wet or exposed to rain, snow, high wind or when repair personnel are exposed to inclement conditions. Frames exposed to inclement weather must be thoroughly cleaned and dried before the repair is made.

2. Surface areas and edges to be joined must be clean and free of oil, grease, loose scale, rust, moisture, paint or other material that could contribute to poor quality welds.

- 3. Always avoid craters, notching and undercutting.
- 4. Peen new welds prior to grinding to relieve stresses caused by shrinkage.

5. Grind all welds flush with the surrounding surfaces. Use a coarse grinder followed by smooth grind at 90° to the crack direction to remove all of the coarse grind marks.

6. Inspect the weld repaired area carefully after grinding. Grind out any remaining cracks, notches or undercuts and repeat the finishing and inspections.

7. For welding cracks to the edge of the sidemember flange, locate a run-off block at the edge as in to obtain a continuous weld without undercuts. After welding, the run-off block should be cut off and the weld should be ground and inspected as in steps 5 and 6 above.

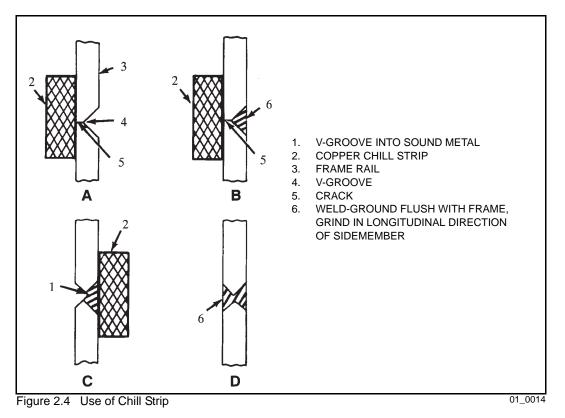
8. Weld to the edges of the holes: The weld should continue into the hole to form a plug weld with a copper chill block on the opposite side to help form the plug. The weld should then be finished as in steps 5 and 6 above and redrilled. Chamfer the hole edges. If the hole was open and unused, install a Grade 8 bolt to help attach the weld repair reinforcement.

Invisible ultraviolet and infrared rays emitted in welding can injure unprotected eyes and skin. Protection such as welder's helmet with dark colored filter lenses of the proper density must be used. GTAW or TIG welding will produce intense radiation, therefore, filter plate lenses of the deepest shade providing adequate visibility are recommended. It is strongly recommended that persons working in the weld area wear flash safety goggles. Also wear protective clothing.

9. Electrodes: Only low hydrogen electrodes should be used. These should be purchased in hermetically sealed containers or dried for two hours at a temperature between 450° F (232° C) and 500° F (260° C).

After drying, the electrodes should be stored in an oven at a temperature of at least 250° F (121° C). If exposed to the atmosphere for more than four (4) hours, the electrodes should be dried before use. ANY MOISTURE INTRODUCED INTO THE WELD COULD DEVELOP POROSITY OR EMBRITTLEMENT, LEADING TO FURTHER CRACKING. Welding procedures will vary among different frame materials. Outlined below are recommendations for welding of the various types of frames.

1. Preheat the frame member along the prepared weld joint to 500 to 600° F (260 to 316° C). Insure the area is clean and any moisture present is eliminated.


2. Permit heated area to cool to 200° F (93° C) or below before welding is started. The weld repair area must be clean before welding.

3. Either alternating current or direct current reversed polarity, combined with a short arc and beading or narrow weave technique, may be used. Direct current reversed polarity is recommended.

- 4. Slag should be removed after each pass and an interpass temperature of 200° F (93° C) should be maintained.
- 5. Grind smooth and flush with surrounding sidemember material. Grind the weld in a direction that is 90° to crack direction (Figure 2.4 D).
- 6. Add reinforcement.

HX[™] Series Series Body Builder

FRAMES • 01 REPAIR AND REINFORCEMENT RECOMMENDED PROCEDURES

High Strength Low Alloy Steel Frames (50,000, 60,000 and 80,000 PSI Yield Strength)

Any of the electric arc methods previously described may be used. The choice of a suitable electrode or wire depends somewhat upon the equipment available for welding and the method selected.

The SMAW and the GMAW methods are preferred for welding the HSLA frames. The use of low hydrogen electrodes is recommended. Refer to Table 2.1 for selection of recommended electrodes and wires, or refer to A.W.S. A5 standard available from <u>www.aws.org</u> for equivalent strength electrodes, wires or rods and power leads to be used in the welding methods. The double V-notch weld preparation using the weld procedure (Figure 2.4) is the preferred welding method.

MATERIAL STRENGTH PSI	RECOMMENDED ELECTRODE AND WIRE		
MATERIAL STRENGTH FSI	SMAW	GMAW	
50,000	E7018	E70S-3	
60,000	_	E70S-1B	
80,000	E8018	E80S-D2	

	Table 2.1	Recommended Electrodes and Wires
--	-----------	----------------------------------

Amperage and voltage recommendations for welding are shown in Table 2.2 and Table 2.3

Table 2.2	SMAW Method ((HSLA Frames)
-----------	---------------	---------------

POSITION ELECTRODE SIZES		WELDING CURRENT		SPEED
POSITION	INCH	AMPERES	VOLTS	(INCH/MIN.)
Flat	.125	-	-	-
Horizontal and Vertical	.125	110/140	20/14	24

 Table 2.3
 GMAW Method (HSLA Frames)

POSITION	ELECTRODE SIZES	WELDING CURRENT		SPEED
FOSITION	INCH	AMPERES	VOLTS	(INCH/MIN.)
Flat	.035	-	-	350/400
Horizontal and Vertical	.035	190/220	20/30	350/400

7. Preheat frame rail along the weld joint to 500 to 600° F (260 to 316° C) to insure any moisture present is eliminated and to prevent too rapid cooling of weld metal.

8. Direct current, reversed polarity is preferred. Weld using a short arc and a beading or narrow weave technique.

9. Slag should be removed after each pass and an interpass temperature of 200° F (93° C) should be maintained.

HX[™] Series Series Body Builder

Frames • 01

REPAIR AND REINFORCEMENT RECOMMENDED PROCEDURES

10. Grind smooth and flush with surrounding sidemember material. Grind the weld in a direction that is at 90° to crack direction (Figure 2.4 D).

11. Add reinforcement.

Heat Treated Frames (110,000 and 120,000 PSI Yield Strength)

When welding Heat Treated Frames (110,000 PSI and 120,000 Yield Strength), use low hydrogen electrodes which have superior crack resistance and notch toughness similar to AWS-E-11018. This type electrode should be stored in a moisture-free container to avoid porosity during welding.

Amperage and voltage recommendations for welding are shown in Table 2.4.

POSITION	AMPERES	VOLTAGE
Downhand	130/140	21/23
Overhead	130/140	21/23
Vertical Up	110/120	22/24

Table 2.4 SMAW Method (Heat-treated Frames)

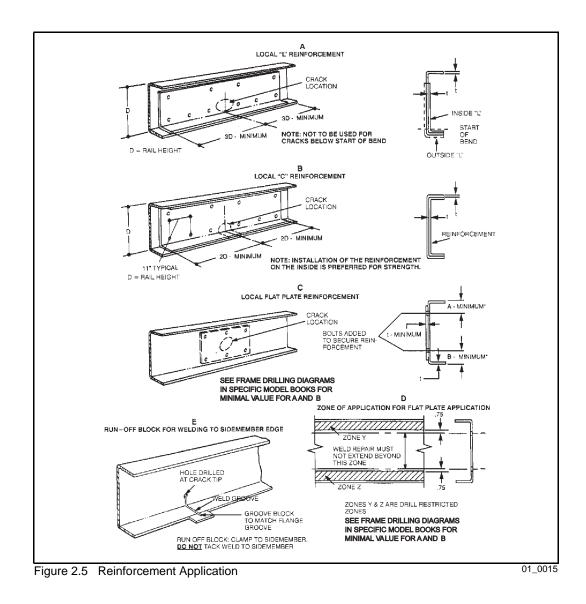
A heavy copper "chill" strip should be clamped to the rail side away from the groove to help control the temperature and cooling rate during welding (Figure 2.4). Short lengths of discarded heavy copper electrical bus bars make suitable chill strips.

Preheat the frame rail along the crack area to 500-600° F (260-316° C). Either alternating current or direct current reversed polarity, combined with a short arc and a beading or narrow weave technique may be used. Direct current reversed polarity is recommended.

Slag should be removed after each pass and an interpass temperature of 200° F (93° C) should be maintained. Grind smooth and flush with surrounding sidemember material, in a direction that is parallel to the longitudinal axis of the sidemember (Figure 2.4 D).

A V-groove is ground from the side opposite the repair and the procedure outlined above repeated. "Chill" strips should be used whenever possible. The V-groove ground on the opposite side of the repair should be deep enough to enter the sound metal of the first weld repair (Figure 2.4 C).

Reinforcement


The strength of the sidemember in the weld joint repair region has been reduced by welding and this region must be reinforced sufficiently to insure that the service life of the frame is not shortened. Reinforcement of the frame after welding is intended to reduce the stresses in the weld repair region to a lower level than was previously permitted. Improper drilling will also reduce the strength of the sidemembers. Refer to "Drilling or Notching".

THE TYPE, LENGTH, MATERIAL AND ATTACHMENT TECHNIQUES FOR REINFORCEMENTS VARY WITH THE TYPE AND LOCATION OF THE CRACK AND WITH THE LOADING CONDITIONS ASSOCIATED WITH THE CRACK. It is not practical to give specific recommendations for all cases of frame cracking, therefore the various types of reinforcements are identified with general descriptions of their applications and installation procedures. To aid in making the distinctions between the more critical flange area and the less critical web area, critical zones are defined (Figure 2.5 D)

HX[™] SERIES SERIES BODY BUILDER

.

FRAMES • 01 REPAIR AND REINFORCEMENT RECOMMENDED PROCEDURES

Cracks which occur in the critical zones have a greater probability of growing vertically through the section, and the reduced strength after weld repair necessitates a more substantial reinforcement.

These guidelines potentially affect the structural integrity of the frame assembly and are intended for those who have the equipment and experience required to qualify as frame repair specialists.

General Weld Repair Reinforcement Procedures

1. The thickness and material strength of the local plate, "L" and channel reinforcements should match the section being reinforced.

2. The corners of the reinforcements which will be in contact with the sidemember along the reinforcement edges must be chamfered to prevent damage to the sidemember.

3. All sidemember reinforcements must be bolted to the web section within the zone shown in the frame drilling guidelines in the specific model body builder book. The bolts must be of SAE Grade 8 or better, with integral flanges or with hardened flat washers and must be tightened to Grade 8 levels.

4. Crossmember modification or replacement may be required if the reinforcement is on the same side as the crossmember.

5. Consider the potential effects of the reinforcements on the various components mounted to the frame. Check clearances for suspension, wiring, plumbing and other controls.

6. For attachment of reinforcements, use existing bolts wherever this is practical.

7. The weld repaired area of the sidemember and all of the reinforcement should be primed and painted before reinforcement installation. For corrosive environments, additional treatment of the interface may be needed.

Full Length Channel Weld Repair Reinforcements

"Full length" channel reinforcements are available through International[®] dealers for most models. The actual length, starting location and ending location vary from model to model. Different length reinforcements may also be available.

When applied as a repair reinforcement, these reinforcements DO NOT increase the load capacity of the vehicle. Their advantage in this case is their availability. A disadvantage of this type is that it is likely to affect more of the components which mount to the frame. In some cases this disadvantage may be offset by cutting the full length reinforcement to create a local reinforcement.

Recommended Applications

- 1. Cases of repair of vertical cracks in either the top or bottom flanges at very low mileage.
- 2. Cases in which the weld repair is accompanied by extensive straightening of heat treated sidemembers.

HX[™] Series Series Body Builder

Frames • 01

JUNE 2016 — 01-18

REPAIR AND REINFORCEMENT RECOMMENDED PROCEDURES

Full Length "L" Weld Repair Reinforcements

Steps 1 and 2 above also apply to the full length "L" reinforcements available from International. All of these are the inverted "L" type and are designed for installation on the outside of the sidemember section (except 9000 Series) (Figure 2.5 A).

Recommended Applications

This type of reinforcement is recommended for cases of cracking at very low mileage where a web crack has extended beyond the range for a flat plate reinforcement but ends short of the bend radius. It is also applicable to cases in which the cracking is accompanied by flange buckling.

Application Procedures

1. For custom-fabricated full length "L" reinforcements, the section should be oriented up or down so that the flange is on the same side as the damaged area.

- 2. For maximum strength the flange should be on the outside of the section.
- 3. Follow the general recommendations above for attachment of the reinforcement.

Local Channel Weld Repair Reinforcements

This type of reinforcement must be custom-fabricated either by cutting lengths from "full length" reinforcements or by forming from flat stock (Figure 2.5 B).

Recommended Applications

- 1. Cases in which the weld repair extends into the sidemember flange after substantial service life.
- 2. Cases accompanied by extensive abrasive wear of the sidemember section. In these cases the length of the wear area should be added to the length recommendations below.

Application Procedures

1. The channel should be installed on the outside of the section for greater strength.

2. Recommended dimensional data and attachment specifications for a typical installation (Figure 2.5 B). Holes drilled for the attachment must be within the frame drilling guidelines in the specific model body builder book.

Local "L" or Inverted "L" Weld Repair Reinforcements

This type of reinforcement is also generally custom-fabricated. It has a greater tendency to loosen than a channel reinforcement because, for vertical deflections of the frame assembly, it tends to bend about an axis different from that of the main sidemember section. Because of this its length and/or attachment specifications are typically greater than for the channel type.

Recommended Applications

This type of reinforcement is recommended for cases in which the weld repair is confined to the web of the section but extends beyond the application zone of the flat plate reinforcements (Figure 2.5 D).

Application Procedures

1. A typical installation for an "L" reinforcement on the inside of a sidemember section along with minimum recommended dimensions (Figure 2.5 A).

- 2. The flange of the reinforcement should be oriented up or down so that flange is on the same side as the damaged area.
- 3. For maximum strength the reinforcement should be installed on the outside of the sidemember section.

Flat Plate Weld Repair Reinforcements

This reinforcement is intended for the less critical, web portion of the sidemember section where typical cracking is due to local stresses which tend to "diaphragm" or "dish" the web without creating appreciable stresses for overall bending of the section. Typical crack patterns radiate out from the edge of a mounting bracket or crossmember or from a hole in the web. Cracks which radiate from a web hole occupied by a fastener are frequently an indication of a defective joint, whether by the lossening of the fastener or poor joint design (Figure 2.5 C).

Recommended Applications

The flat plate reinforcements are recommended for weld repairs in which the weld does not extend beyond the zone (Figure 2.5 D).

Application Procedures

1. A typical installation (Figure 2.5 C) shows the length and height of the plate will vary with the size of the weld repair area. In general it should be such that it will accommodate an array of reinforcement attachment bolts at a typical 3 to 5 inch (76 to 127 mm) spacing all around the weld repair area.

2. The plate should generally be installed on the side opposite the component which transferred the local bending load into the web.

3. The edges of the plate should be staggered with respect to the edges of other relatively stiff web mounted components to avoid the creation of stress concentrations.

HX[™] Series Series Body Builder

FRAMES • 01 BOLT AND TORQUE INFORMATION

Bolt and Torque Information

Most frames are assembled with bolts and nuts. Others are riveted. **BOLTS MUST ALWAYS BE USED WHEN ATTACHING A REINFORCEMENT.** Rivets should be replaced by bolts as required when the frame is repaired and reinforced.

In bolted joints, the majority of the load is transferred by frictional force or clamping force between the members of the joint. The bolts must be properly tightened to develop and maintain the desired clamping force. Operation of the joint with loose or improperly tightened bolts can lead to failure of the joint. The bolts and nuts should be inspected periodically to insure that proper torque is maintained.

Bolts of high strength material conforming to SAE Grade 8 bolts should be used on all frames. For installation of reinforcements, 0.5 inch (13 mm) diameter flange head bolts are recommended. The SAE Grade 8 bolt is identified by six radial line markings on the head of the bolt (Figure 2.6). Nuts must be Grade 8 flange type.

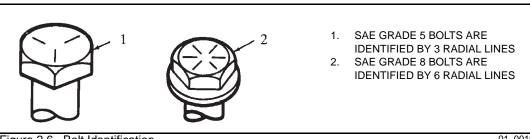
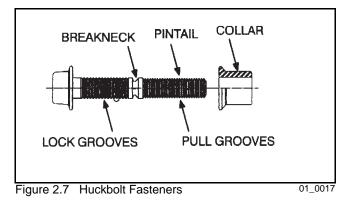


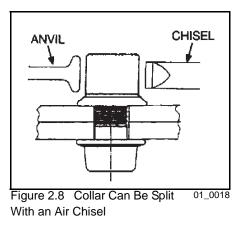
Figure 2.6 Bolt Identification

01_0016


These bolts, 0.5 inch (13 mm) diameter flange head type, should be tightened to 110 to 120 ft-lbs. (149 to 163 Nm) based on new bolts and nuts lubricated with engine oil. Whenever possible, hold the bolt and tighten the nut.

If frame components are aluminum, flange head bolts and nuts, or bolts with hardened flat washers must be used. If modification or repair requires replacement of existing bolts with new bolts or bolts of a greater length, the old flange head nuts should not be used with new standard bolts.

Careful consideration is given to the number, location and sizes of frame bolt holes in the design of a vehicle. The number, location and sizes of additional bolt holes put in the frame subsequent to manufacture of the vehicle can adversely affect frame strength. The adverse effect of additional bolt holes can be minimized by following the guidelines.


Huckbolt Fasteners (HP 8)

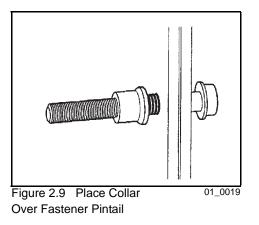
Huckbolt HP 8 fasteners are used in various positions in frame rail construction. Advantages to this style fastener are consistent clamp load and a high resistance to loosening due to vibration. The need to recheck fastener torque is eliminated.

Removal

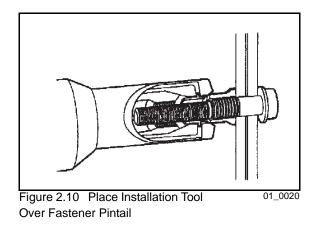
The swaged collar cannot be unscrewed due to the locking grooves on the HP 8 fastener. Removal requires a Huck Collar Cutter or the collar can be split with an air chisel while supporting the opposite side of the collar. When the collar is split, the fastener can be driven out with a punch.

HX[™] SERIES SERIES BODY BUILDER

FRAMES • 01 BOLT AND TORQUE INFORMATION

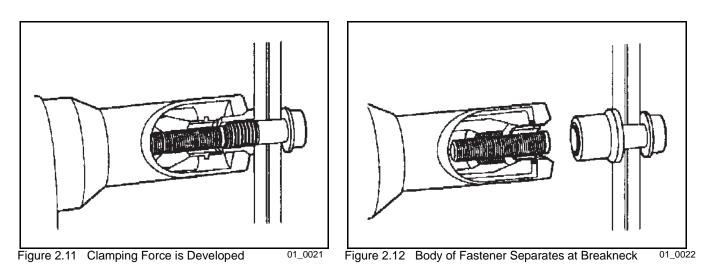

CAUTION: The HP 8 fastener is not intended for re-use. To do so can result in damage to the vehicle frame or components attached to the frame.

CAUTION: In the event that Huck fasteners are removed, in order to retain the same joint integrity, it is strongly recommended that new Huck fasteners be used for attachment/reattachment of components.


Installation

Huckbolt HP 8 fasteners cannot be installed without Huck installation equipment.

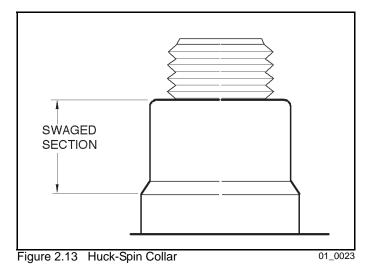
- 1. Install the HP 8 fastener into the component and frame hole.
- 2. Place the collar over the fastener pintail (Figure 2.9)



3. Place the Huck installation tool over the HP 8 fastener pintail (Figure 2.10)

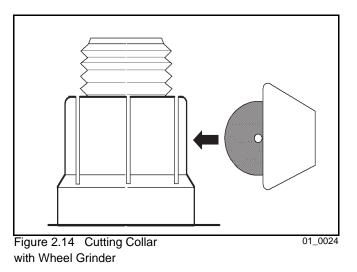
4. Activate the Huck installation tool.

The Huck installation tool creates a pulling force on the fastener, seating the bolt head and closing the gap between the mating surfaces. The collar is swaged into the pintail locking grooves developing clamping force (Figure 2.11). As pulling forces further increase, the body of the fastener separates at the breakneck (Figure 2.12), completing installation.


HX[™] SERIES SERIES BODY BUILDER

FRAMES • 01 BOLT AND TORQUE INFORMATION

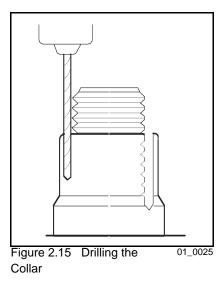
Huck-Spin Fasteners


Description

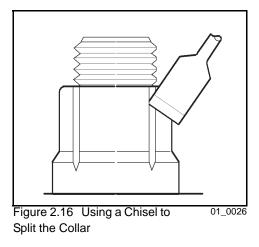
Huck-Spin fasteners are used in various positions in frame rail construction. The installed fastener has a collar that is cold-worked or swaged over the grooved pin (Figure 2.13). Advantages to this style fastener are consistent clamp load and a high resistance to loosening due to vibration. The need to recheck fastener torque is eliminated.

Remove

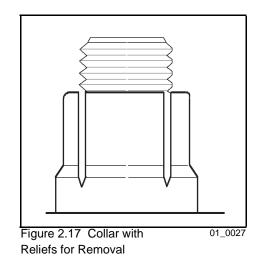
The collar cannot be removed by twisting or hammering. The collar must be cut longitudinally to the extent of the swaged section. This can be accomplished with a small wheel grinder (Figure 2.14).

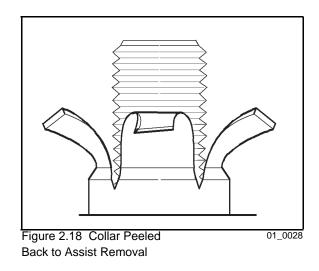


HX[™] SERIES SERIES BODY BUILDER


FRAMES • 01 BOLT AND TORQUE INFORMATION

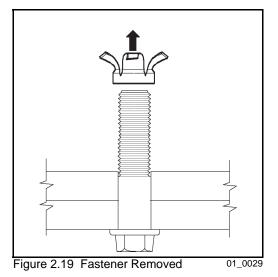
JUNE 2016 — 01-26


Drilling on opposite sides of the collar may also be used (Figure 2.15).

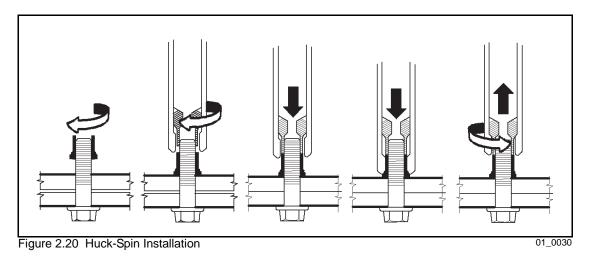

Another method of splitting the collar is to chisel the walls of the collar (Figure 2.16).

When the collar has been opened over the length of the swaged portion on two opposite sides (Figure 2.17), the fastener can be removed. The fastener may need to be hammered to remove the collar.

In the event the collar doesn't come loose, use a chisel or suitable tool to peel the collar sections back (Figure 2.18).

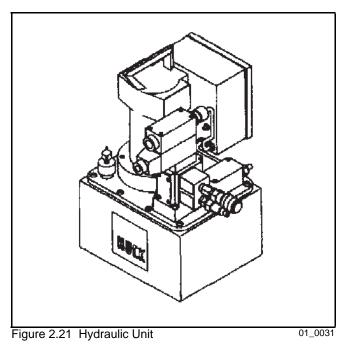


HX[™] SERIES SERIES BODY BUILDER


FRAMES • 01 BOLT AND TORQUE INFORMATION

The fastener will come free when sufficient collar material has been pulled away (Figure 2.19).

Install


The Huck-Spin is installed by spinning the collar onto the fastener. The pulling action of the Huck-Spin installation tool swages the collar into the grooves of the fastener and then automatically disengages from the fastener (Figure 2.20).

Special Service Tools

Hydraulic Unit – Model No. 940

Used for removal and installation of the Huck Bolt.

HX[™] Series Series Body Builder

FRAMES • 01 SPECIAL SERVICE TOOLS

Nose Assembly Tool

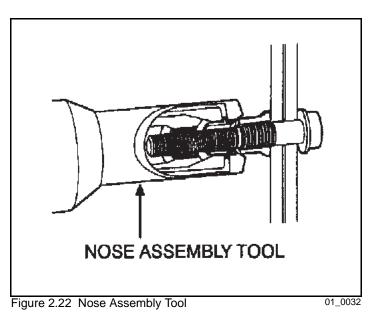


Table 2.5 Nose Assembly Tool

DESCRIPTION	TOOL NUMBER
For 1/2 Dia. Fastener	99-1484
For 5/8 Dia. Fastener	99-1481

Hydraulic Installation Tool

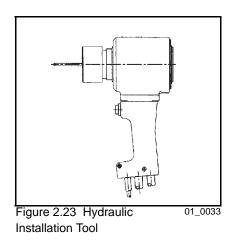


Table 2.6 Hydraulic Installation Tool

DESCRIPTION	TOOL NUMBER
For 1/2 Dia. Fasteners	557
For 5/8 Dia. Fasteners	585

Collar Removal Tool

Table 2.7 Collar Removal Tool

DESCRIPTION	TOOL NUMBER
For 1/2 Dia. Fasteners	516
For 5/8 Dia. Fasteners	520

ORDER TOOLS FROM:

Huck International, Inc.	Phone: (800) 431-3091
P.O. Box 2270, One Corporate Drive	Phone: (914) 331-7300
Kingston, NY 12401	Fax: (914) 334-7333
Kingston, NY 12401	Fax: (914) 334-7333

FRAMES • 01 AFTERMARKET MODIFICATIONS

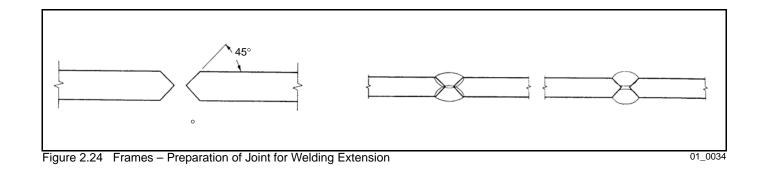
Aftermarket Modifications

Cutting the frame behind the rear axle to shorten the frame is acceptable. Mechanical cutting or sawing is preferred to torch cutting. Whenever it is necessary to cut the frame, the sidemember should be cut at an angle of 90° to the longitudinal axis.

For information on cutting of the frames to lengthen the frames or modify the wheelbase, refer to "Wheelbase Alterations".

Where mounting angles are to be welded to fifth wheel assemblies, refer to fifth wheel manufacturer's recommendations.

In some cases, specialized equipment such as hoists, winches, lifts, snowplows, pusher and tag axles are added to the vehicle by distributors, installers or dealers. Unless otherwise specified by the customer at the time of assembly, the vehicle is generally equipped with a standard chassis frame and the manufacturer has not made special allowances for the special equipment which is being added.


The addition or installation of this special equipment on the vehicle can significantly affect the loading of the chassis frame. In some cases, it may be necessary to reinforce the frame. Care must be exercised to insure that the gross vehicle weight rating (GVWR) and/or the gross axle weight ratings (GAWR) are not exceeded.

Installation of this special equipment may involve State and Federal requirements which affect vehicle certification for noise emissions, exhaust emissions, brake requirements, lighting system requirements, etc. The specialized equipment installer is responsible for the safety and durability of their product and, in addition, is responsible to insure that the equipment and its installation comply with all applicable State and Federal Department of Transportation requirements and OSHA regulations.

Addition of specialized equipment may have a significant effect on other vehicle components, such as the brake system, steering system, suspension system, etc. Simple reinforcement of the chassis frame may not be adequate to provide safe operation of the vehicle.

In any modification of the chassis frame, the addition of holes, reinforcements, welds, clamps, splices, etc. may cause an increase in the local stress in the frame at the point of the modification. These local stress concentrations can significantly affect the life of the chassis frame. The specific effect which the stress concentrator will have on the life of the chassis frame is influenced by the location of the stress concentration, the frequency and severity of the loading, and the type of stress concentration. Any modification of the frame may void the manufacturer's warranty.

Refer to "Welding and Reinforcement" information.

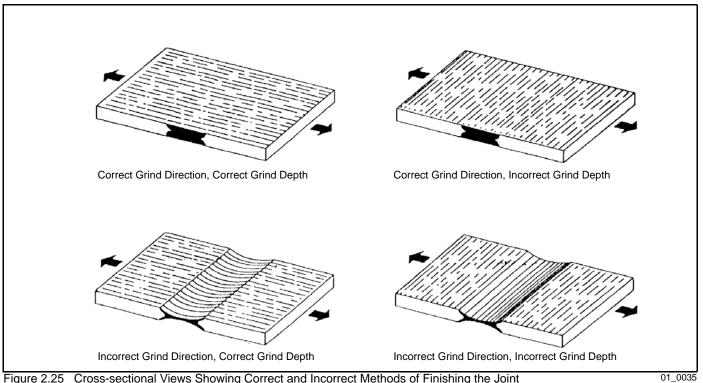


Figure 2.25 Cross-sectional Views Showing Correct and Incorrect Methods of Finishing the Joint

FRAMES • 01 **AFTERMARKET MODIFICATIONS**

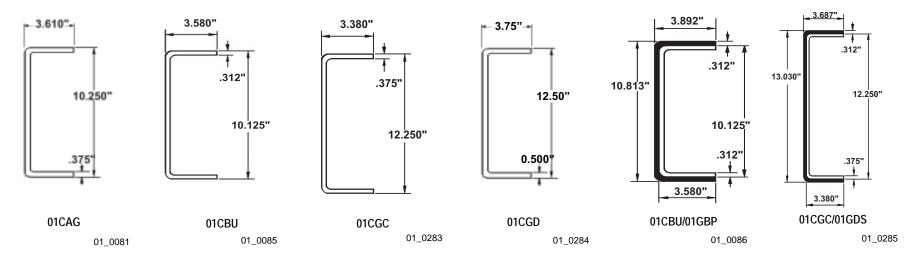
FRAMES • 01 WHEELBASE ALTERATIONS

Wheelbase Alterations

Shortening or lengthening a wheelbase is an added expense for the customer. Therefore, it is often to the customer's benefit to order a chassis from the factory with the desired wheelbase rather than to alter the wheelbase of the chassis on-site.

The preferred method for altering the wheelbase is to slide the rear axle forward or rearward as required. Invariably, this requires the lengthening or shortening of air lines, brake lines, electrical lines, and driveline. Extreme care should be taken in the modification of the air lines, brake lines, electrical lines and driveline to insure that they operate as reliably as those with which the vehicle was manufactured.

If the wheelbase is lengthened, a reinforcement may be required. Consult your International[®] dealer before lengthening the wheelbase.


In those instances when it is necessary to cut and weld the frame to alter the wheelbase, the frame must be reinforced with a channel-type reinforcement of the same strength as the original frame material in the area where the frame has been cut, extending at least two feet on either side of the cut and bolted (Figure 2.5 D) shown earlier in this section.

If the frame was built with both a main frame and a reinforcement, the reinforcement should be removed before cutting the main frame. IT IS ESSENTIAL THAT A NEW ONE-PIECE OUTER CHANNEL REINFORCEMENT BE OBTAINED RATHER THAN CUTTING AND RE-USING THE ORIGINAL REINFORCEMENT. The original frame should also be reinforced with an inner channel reinforcement, extending at least two feet beyond the cut(s) on either side of the cut(s). The reinforcement must be of the same material as the original frame. Blank and pre-punched chassis channel reinforcements are available through your dealer parts department.

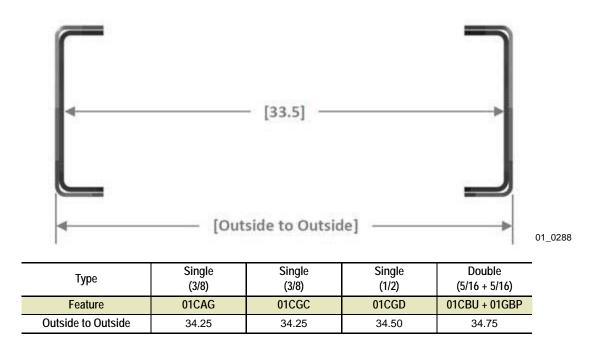
On both medium and high strength aluminum frames, **RE-WELDING TO LENGTHEN THE FRAME IS NOT RECOMMENDED**. Refer to "Reinforcement" and "Reinforcement Attachment" for additional information.

Frame Rail Cross-Section Specifications

NOTE: Dark area represents frame reinforcement.

_	Side Rail ^[2] & <i>Reinforcement</i> Descriptions										
Frame Key Code	Dimensions (Inches)		Yield Strength	Material #	Section Modulus ^[1] (Inches ³)		Resisting Bending Moment (InLbs.)				
Couc	Depth	Width	Thickness	Nominal (psi)	ii (psi)	Maximum	Nominal	Maximum	Design		
	Straight Channel Side Rail										
01CAG	10.250	3.610	0.375	120,000	С	17.79	16.98	2,134,800	2,037,600		
01CBU	10.125	3.580	0.312	120,000	С	14.85	14.18	1,780,800	1,701,600		
01CGC	12.250	3.380	0.375	120,000	С						
01CGD	12.500	3.750	0.500	120,000	С						
			Straight Cha	innel Side Rail with C	Outer Full Channel Re	einforcement					
01CBU 01GBP	10.125 <i>10.813</i>	3.580 3.892	0.312 0.312	120,000 <i>120,000</i>	C C	31.72	29.84	3,806,400	3,580,800		
01CGC 01GDS	12.250 13.030	3.380 3.687	0.375 0.312	120,000 <i>120,000</i>	C C						

Notes: C =Heat Treated Alloy Steel

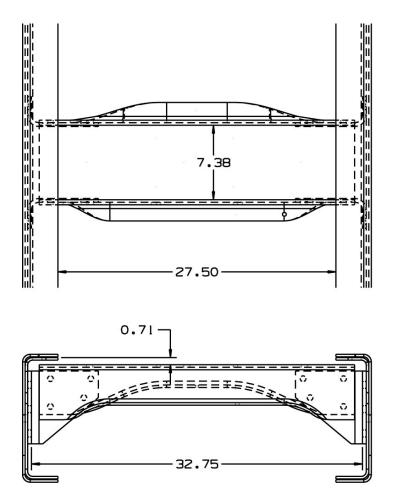

[1] = SECTION MODULUS: MAXIMUM TOLERANCE: All frame dimensions are at maximum tolerance; used by some competitors as advertised values. NOMINAL: Calculated using design dimensions - indicates the design load capacity of the frame.

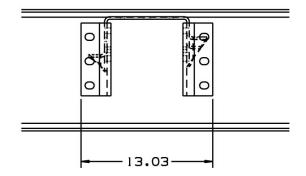
[2] = Reinforcement dimensions and specifications are shown in *italics*.

FRAMES • 01 FRAME RAIL CROSS-SECTION SPECIFICATIONS

Frame System Overall Width.

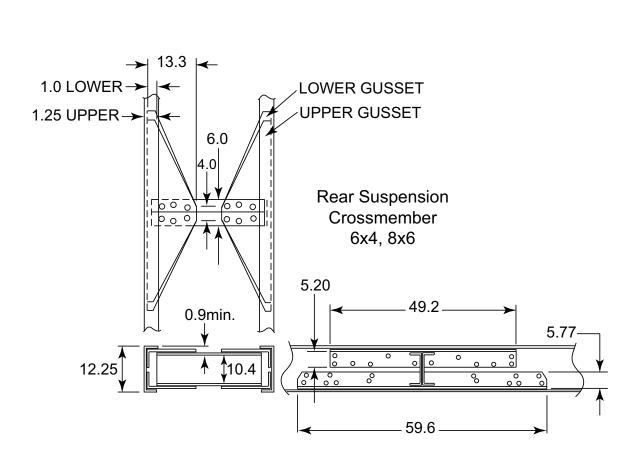
Frame Rail Reinforcement

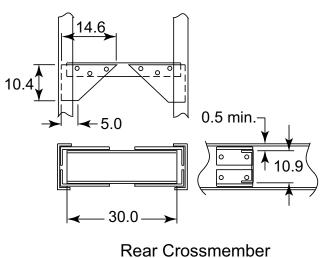



01_0221

HX[™] SERIES SERIES BODY BUILDER

FRAMES • 01 INTERMEDIATE CROSSMEMBERS - ALL MODELS

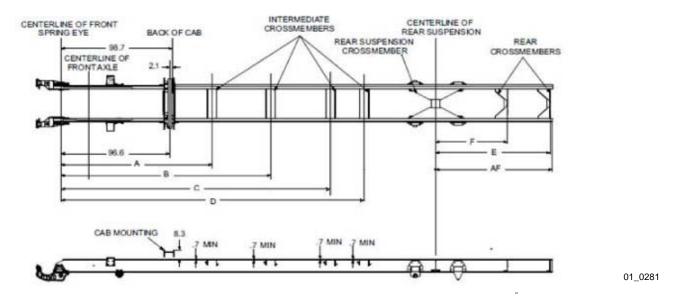

Intermediate Crossmembers - All Models



01_0280

Rear Crossmembers - All Models

6x4, 8x6


01_0233_a

HX[™] Series Series Body Builder

FRAMES • 01 CROSSMEMBER LOCATIONS - 6x4 MODELS

JUNE 2016 — 01-40

Crossmember Locations - 6x4 Models

Wheelbase (Inches)	A	В	С
172 thru 182	-		
184 thru 208	121.35	-	
210 thru 226	134.13		
228 thru 230	134.13	164.13	
232	139.13	-	_
234 thru 240	134.13	164.13	
242	147.13	I	
244 thru 250	134.13	164.13	

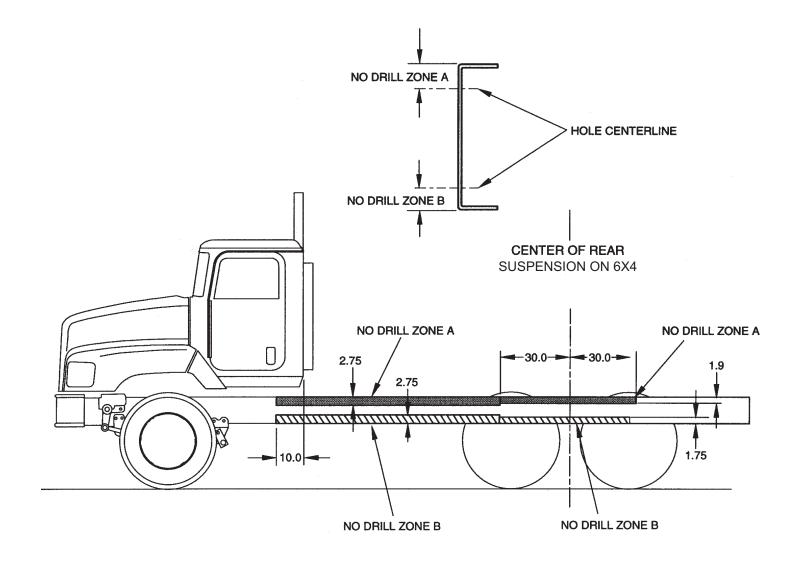
_	Wheelbase (Inches)	A	В	С
	252 thru 266	179.13		-
-	268 thru 280	164.13	-	194.13
-	282 thru 296	174.13		209.13
-	298 thru 310	179.13	158.2	224.13
-	312 thru 332		173.2	
-	334 thru 346	186.13	158.2	239.13
-	348 thru 368		168.2	

AF	E	F
54	49.0	_
66	61.0	_
78	73.0	49.0
90	85.0	49.0

Frame Drilling Guidelines

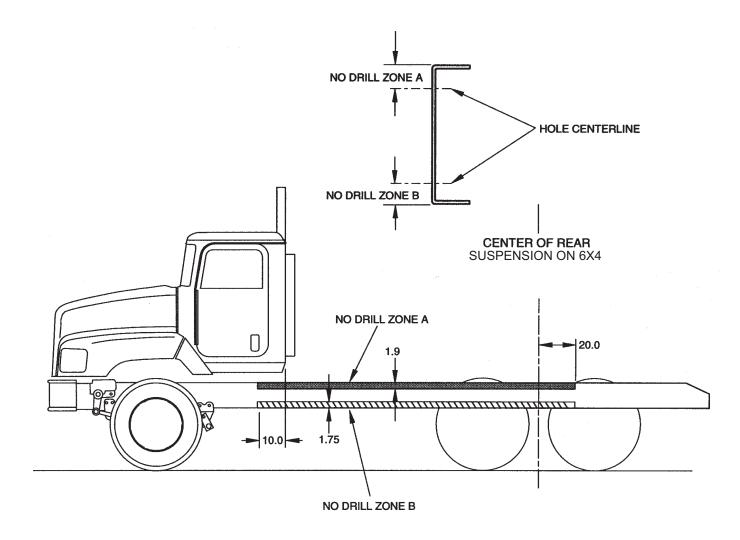
The drilling of the frame sidemember presents no unusual difficulty. Standard high speed steel drills of good quality will serve provided they are sharpened properly and not overheated during sharpening or use.

Hole Location Guidelines


- 1. Never drill holes into the restricted areas of the frame rails. Refer to diagrams on the following pages.
- 2. Use existing holes whenever possible.
- 3. Maintain a minimum of 0.75 inch (19 mm) of material between holes.
- 4. There should not be more than three holes located on a vertical line.
- 5. Bolt holes should be no larger than is required for the size of bolts being used, in no instance larger than 11/16 (.688 inch).
- 6. If reinforcements are used, avoid drilling holes closer than 2.0 inches (51 mm) from the ends of the reinforcement.
- 7. Bolts must be periodically checked to insure that the proper torque and clamping force is maintained.
- 8. Never drill any holes in the flanges of the frame rail.

Frame Height					
Feature Code	Dimension (In.)				
01103, 01104, 01105, 01CDU, 01CDV without reinforcement	12.00				
01103, 01104, 01105, 01CDU, 01CDV with reinforcement	12.65				
01123, 01124, 01125, 01126, 01CDW, 01CDX, 01CDY, 01CDZ without reinforcement	12.25				
01123, 01124, 01125, 01126 with reinforcement	13.025				
01CCP, 01CCR. 01CCS without reinforcement	10.125				
01CCP, 01CCR, 01CCS with reinforcement	10.875				
01CEA, 01CCT, 01CCU, 01CCV, 01CCW, 01CCX without reinforcement	10.25				

HX[™] SERIES SERIES BODY BUILDER

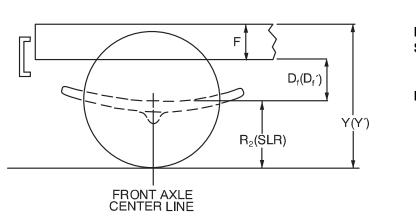

FRAMES • 01 FRAME DRILLING GUIDELINES

Frame Drilling Restrictions - Truck

01_0130_a

Frame Drilling Restrictions - Tractor

FRAMES • 01 FRAME DRILLING GUIDELINES JUNE 2016 — 01-43


HX[™] Series Series Body Builder

FRAMES • 01 FRAME HEIGHT CALCULATIONS AT CENTERLINE OF FRONT AXLE

Frame Height Calculations at Centerline of Front Axle

The front frame height (@ the centerline of the front axle) may be calculated using the following equations. Refer to the illustration for a visual explanation of the symbols used in these calculations.

f

- Wheel axis to bottom of frame in unladen position. Refer to tabulated data.
- Wheel axis to bottom of frame in loaded position. Refer to tabulated data.
- **F** = Frame rail height. Refer to tabulated data.
- **SLR =** Static Loaded Radius. The distance from the wheel axis to the ground for a properly inflated, fully loaded (loaded to its maximum capacity) tire. To obtain tire dimensions, contact the tire manufacturer.
- **R**₁ = Tire Radius (one half of tire outside diameter) **not** mounted on the vehicle. To obtain tire dimensions, contact the tire manufacturer.
- 2 Calculated Tire Radius on an unloaded chassis. The value of **R**₂ is calculated using the following method.

$$R_2 = R_1 - .2(R_1 - SLR)$$

01_0132 **Y**

,

- **Y** = Front Frame Height at the front axle centerline in unloaded condition.
 - Front Frame Height at the front axle centerline in loaded condition.

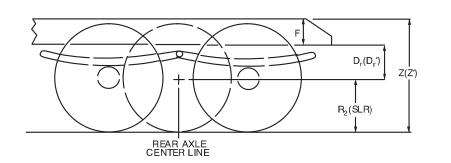
Y =
$$D_f + R_2 + F$$
(for unloaded condition)Y' = $D_f' + SLR + F$ (for loaded condition)

Values calculated for Y and Y' are strictly for the frame height at the front axle centerline. For frame heights at the front of the frame rail, refer to "FRAME HEIGHT CALCULATION – AT FRONT AND REAR RAIL ENDS" on page 92 in this book.

JUNE 2016 — 01-44

Frame Height Data - Front Suspension

	Front Suspension		Spindle To Bot	tom Of Frame*	
Туре	Feature Code	Capacity	Unloaded – D _f	Loaded – D_{f}	
	03ADC	12,000-lb	8.0"	6.7"	
	03ADD	14,000-lb	8.1"	6.6"	
	03ADE	16,000-lb	8.3"	6.6"	
Parabolic	03ADG	18,000-lb	8.3"	6.6"	
Parabolic	03ADJ	20,000-lb	9.5"	7.4"	
	03AEB	20,000-lb			
	03AGA	20,000-lb	9.29"	8.04"	
	03AGD	13,200-lb	9.0"	7.8"	
	03ACH	14,000-lb	10.0"	8.5"	
	03ACP	16,000-lb	10.0"	8.6"	
	03ACR	18,000-lb			
	03ACS	20,000-lb			
	03ACT	23,000-lb			
Multileaf w/Torque Rod	03ACU	20,000-lb			
	03ACX	24,000-lb			
	03ADR	20,000-lb			
	03ADS	20,000-lb			
	03AEP	23,000-lb			
	03AGR	20,000-lb			
Multileaf, Two-Stage	03AEX	20,000-lb			


NOTE: * Bottom of Standard Frame in Model. Adjust dimensions for optional frame reinforcements - See Frame Section

HX[™] Series Series Body Builder

FRAMES • 01 FRAME HEIGHT CALCULATIONS AT CENTERLINE OF REAR AXLE

Frame Height Calculations at Centerline of Rear Axle

The rear frame height (@ the centerline of the rear axle) may be calculated using the following equations. Refer to the illustration for a visual explanation of the symbols used in these calculations.

- Wheel axis to bottom of frame in unladen position. Refer to tabulated data. r
- Wheel axis to bottom of frame in loaded position. Refer to tabulated data.
- Frame rail height. Refer to tabulated data. F =
- SLR = Static Loaded Radius. The distance from the wheel axis to the ground for a properly inflated, fully loaded (loaded to its maximum capacity) tire. To obtain tire dimensions, contact the tire manufacturer.
- **R**₁ = Tire Radius (one half of tire outside diameter) **not** mounted on the vehicle. To obtain tire dimensions, contact the tire manufacturer.
- 01_0133 Calculated Tire Radius on an unloaded chassis. The value of R₂ is 2 calculated using the following method.

$$R_2 = R_1 - .2(R_1 - SLR)$$

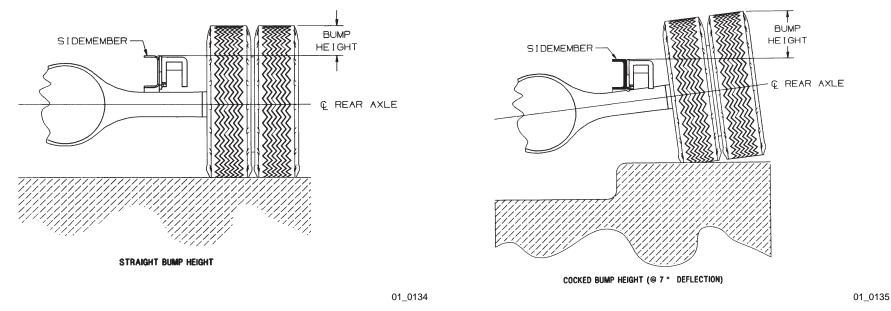
- Rear Frame Height at the rear axle centerline in unloaded condition. Z =
 - Rear Frame Height at the rear axle centerline in loaded condition.

$$Z = D_r + R_2 + F$$
$$Z' = D_r' + SLR + F$$

(for unloaded condition)

(for loaded condition)

NOTE: Values calculated for Z and Z' are strictly for the frame height at the rear axle centerline. For frame heights at the rear of the frame rail, refer to **"FRAME HEIGHT CALCULATION – AT FRONT AND REAR** RAIL ENDS".


JUNE 2016 - 01-46

Bump Heights - Rear

"Bump Height" refers to the maximum distance of the tires above the side rails as the rear axle of the truck travels over an object. Bump Heights are important in the selection of truck bodies since it may be necessary to incorporate wheelwells into the body floor to allow adequate clearance for tire travel.

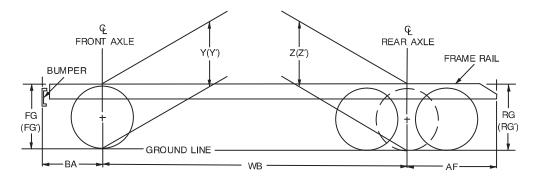
Straight Bump Height is used when both sets of wheels travel over an object at the same time, such as a parking lot speed bump.

Cocked Bump Height refers to the condition that exists when only one set of rear wheels travels over an object — an example of this would be climbing over a curb when turning a corner. The Cocked Bump Height Charts presented here assume a 7° deflection from horizontal.

- " Wheel Axis to bottom of frame in straight bump position. Refer to tabulated data.
- **R**₁ = Tire radius (one-half of tire outside diameter) mounted on the vehicle. To obtain tire dimensions, contact the tire manufacturer.
- **F** = Frame Rail Height. Refer to tabulated data.

Straight Bump Height = $R_1 - D_r'' - F$ Cocked Bump Height = Straight Bump Height + 3.5 In.

HX[™] Series Series Body Builder


FRAMES • 01 SINGLE AXLE FRAME AND BUMP HEIGHT DATA - REAR

Single Axle Frame and Bump Height Data - Rear

Model	Rear Suspension		S	pindle To Bottom Of Fram	e
Model	Туре	Capacity	Unloaded – D _r	Loaded – D _r '	Bump – D _r "
		40,000-lb (14UHD)	9.7	8.5	7.3
		40,000-lb (14ULX)	10.56	9.5	8.5
		46,000-lb (14UHK)	11.1	10.0	9.0
		46,000-lb (14UHL)	11.1	10.0	9.0
		46,000-lb (14ULY)	10.56	9.5	8.5
	Walking Beam	46,000-lb (14ULZ)	10.56	9.5	8.5
		46,000-lb (14UMC)	10.56	9.5	8.5
		46,000-lb (14UZT)	12.5	10.85	7.4
		52,000-lb (14698)	12.5	11.0	9.5
		65,000-lb (14524)	13.0	12.0	11.0
	Rubber Spring	46,000-lb (14UZB)	10.5	9.7	8.8
6x4		50,000-lb (14UZP)	12.5	10.86	9.2
		40,000-lb (14UZR)	11.13	9.6	7.4
		40,000-lb (14UZS)	11.13	8.94	7.4
		46,000-lb (14UZU)	12.5	10.13	7.4
		46,000-lb (14UZV)	12.5	10.13	7.4
		40,000-lb (14UKZ, 14ULA)	9.5	9.5	6.3
		40,000-lb (14ULU, 14ULV)	9.5	9.5	6.3
		46,000-lb (14UKU, 14UKX, 14UKY)	10.0	10.0	6.9
	Air	46,000-lb (14ULB, 14ULC, 14ULS)	9.5	9.5	6.3
		46,000-lb (14ULT, 14UNW, 14UNX, 14UNY)	9.5	9.5	6.3
		52,000-lb (14VKA, 14VKB, 14VKC)	10.0	10.0	6.9
00	A :	69,000-lb (14VKD)	10.0	10.0	6.9
8x6	Air	78,000-lb (14VKE)	10.0	10.0	6.9

Frame Height Calculations at Front and Rear Rail Ends

Now that we have learned to calculate the frame height at both the front and rear axle centerlines, we can determine the frame height values at both rail ends.

01_0136

First we must determine the rake of the frame (i.e., the slope of the frame from front end to rear end). If the front end of the frame is higher than the rear end (i.e., > or Y'> ') then the truck is said to have a negative rake. In this situation, the equations for determining the frame height at the rail ends are:

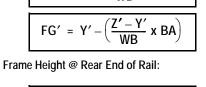
For situations where the rake is positive (i.e., Y < Z or Y' < Z') the equations for determining frame height at the rail ends are:

Frame Height @ Front End of Rail:

$$FG = Y + \left(\frac{Y - Z}{WB} \times BA\right)$$
$$FG' = Y' + \left(\frac{Y' - Z'}{WB} \times BA\right)$$


Frame Height @ Rear End of Rail:

$$RG = Z - \left(\frac{Y - Z}{WB} \times AF\right)$$
$$RG' = Z' - \left(\frac{Y' - Z'}{WB} \times AF\right)$$


(for unloaded condition)

(for loaded condition)

i i dinio i i orgi



(for loaded condition)

 $FG = Y - \left(\frac{Z - Y}{WB} \times BA\right)$

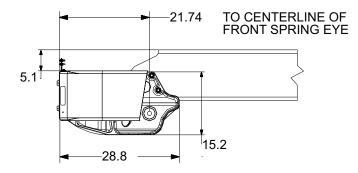
Frame Height @ Front End of Rail:

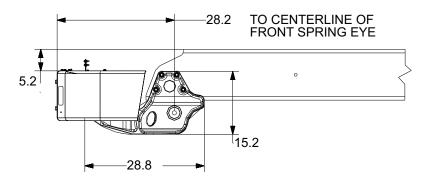
(for unloaded condition)

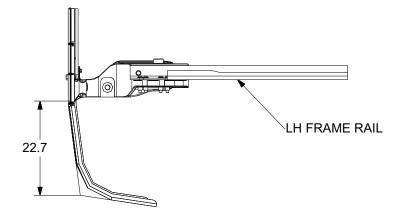
(for unloaded condition)

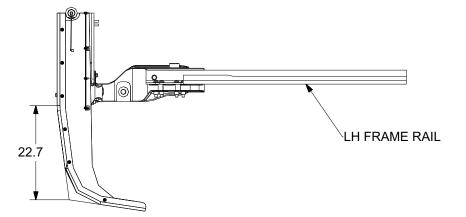
(for loaded condition)

(for loaded condition)

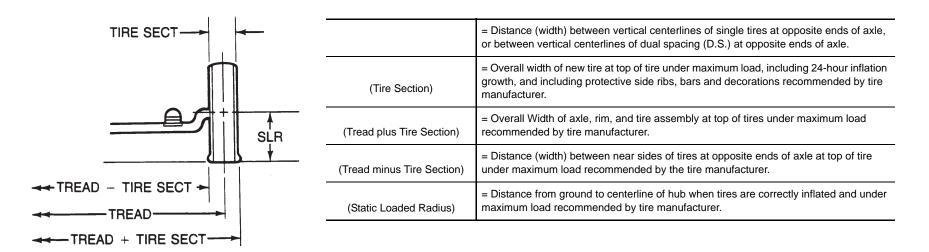

HX[™] SERIES SERIES BODY BUILDER


FRAMES • 01 FRONT BUMPER MOUNTING - ALL MODELS JUNE 2016 — 01-50


Front Bumper Mounting - All Models


STANDARD SBA BUMPER MOUNTING CODE 01LRB

OPTIONAL SBA BUMPER MOUNTING CODE 01LRC



01_0231

FRONT AXLES

Tread

All Models

02_0007

The chart shown here lists tread information for various wheel/axle combinations. Tread dimensions are not dependent on tire size. Other dimensions explained here are related to tread and require tire dimensions. Please contact your tire supplier (or consult the CT-400 Sales Data *Component Book, PDB-70000*) for tire dimensions.

FRONT AXLES • 02 TREAD

D	sc Wheel/Rim	Axle Code							
Size	Material	02AEU 02ARU, 02AYL	02ARW	02AEV, 02AEW, 02AGT, 02ARY, 02ARZ, 02AYJ, 02AYK	02ASG	02ASM	02ATB	02AUR	
22.5 x 8.25	Steel	82.72	81.63	82.22	81.70	81.63	82.22	82.76	
22.5 X 0.25	Aluminum	83.68	82.59	83.18	82.57	82.59	83.18	83.66	
	Steel (7.0" Offset)	82.34	-	81.84	81.25	-	81.84	82.34	
22.5 x 9.00	Steel (5.25" Offset)	85.59	84.50	81.84	84.50	84.50	85.09	-	
22.5 X 9.00	Steel (6.75" Offset)	_	-	-	-	-	-	84.59	
	Aluminum	83.05	-	82.55	82.08	-	82.55	83.05	
	Steel (4.625" Offset)	87.09	-	85.09	86.00	-	86.59	87.09	
22.5 x 12.25	Steel (6.375" Offset)	83.59	-	85.09	82.50	-	83.09	83.59	
22.5 X 12.25	Aluminum	85.58	-	85.08	84.50	-	85.08	-	
	Aluminum (5,875" Offset)	_	-	-	_	-	-	85.59	
22 E v 12 00	Steel	-	-	84.09	83.50	-	84.09	86.45	
22.5 x 13.00	Aluminum	84.58	_	84.08	83.51	_	84.08	84.59	
24 E x 8 25	Steel	82.72	81.63	82.22	81.63	81.63	82.22	82.76	
24.5 x 8.25	Aluminum	83.78	82.69	83.28	82.53	82.69	83.28	83.66	

NOTE: Widths calculated with standard wheel ends, standard brakes, and standard brake drums based on 285BC wheels. All wheel sizes may not be available with above feature codes.

BRAKES

Air Brake Modifications

All Models

Certification Procedures For DOT FMVSS-121

The Federal Department of Transportation's Motor Vehicle Safety Standard 121 requires that virtually all trucks equipped with air brakes and manufactured on or after March 1, 1975 must comply with a comprehensive set of design and performance parameters concerning the air brakes and related systems.

Of the many requirements of FMVSS 121, two are of primary concern between the truck manufacturer and the body and allied equipment manufacturer. The first concern is the center of gravity location on a truck used for compliance testing and the second involves the tubing and air flow design of the brake system.

CAUTIONS

FMVSS-121 Air Brake System Modifications

CAUTION: If wheelbase alterations are made to International[®] vehicles with FMVSS-121 brakes:

- **DO NOT** make alterations to air lines with hose, piping or fittings of sizes other than those currently in use on the truck.
- **DO NOT** allow sharp bends or other constrictions in hosing.
- **DO NOT** exceed the minimum or maximum wheelbase available from the factory for that model after lengthening or shortening the wheelbase. For wheelbases longer or shorter than those available from the factory, International will provide verbal opinion (through contacting your local International dealer). International will be available to provide certification testing and documentation of compliance or non-compliance with FMVSS-121 for the specific situation at an additional cost.

CAUTION: Air reservoirs may be relocated providing these guidelines are followed:

- **DO NOT** make alterations to air lines with hose, piping or fittings of sizes other than those currently in use on the truck.
- **DO NOT** allow sharp bends or other constrictions in hosing.
- **DO NOT** alter brake line to port location.

CAUTION: Air-operated auxiliary attachments may be added to International FMVSS-121 vehicles if you:

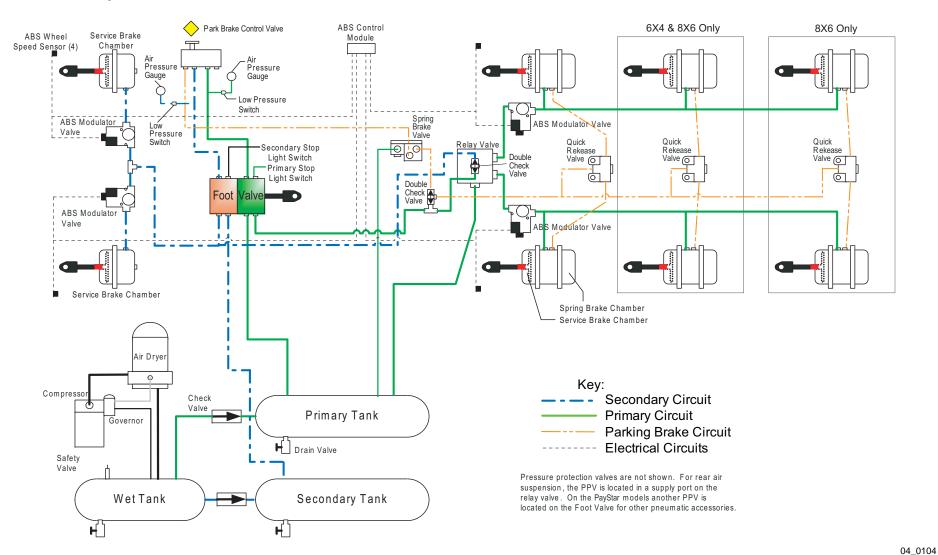
- **DO NOT** use air tap locations other than those shown on these drawings for these models.
- PRESSURE PROTECTION VALVES ARE REQUIRED WHERE SHOWN AND SHOULD BE MOUNTED WITH THE VENT PORT DOWNWARD. ALL NEW PARTS ARE AVAILABLE FROM INTERNATIONAL TRUCK DEALERS. Since the FVMSS-121 has very specific criteria for the time allowed for air to reach and release the brakes, it is obvious that the tubing design is very critical and that the allowable sources for air tap must necessarily be restricted. Consult FMVSS-121 for criteria for time allowed for apply and release of brakes.

HX[™] Series Series Body Builder

BRAKES • 04 BRAKE RESTRICTIONS

Brake Restrictions

Should it be necessary to modify the braking system, for example in connection with a wheelbase alteration, the following must always be observed:


- Make sure that the brake circuits are not altered. Before any part of the braking system is dismantled, mark the brake tubes and connections concerned, or make a sketch showing the original routing.
- Avoid joints or couplers, preferably change the entire brake tube/hose.
- Preferably, use bent brake tubes instead of elbow unions so as not to affect the brake application/release times.
- Install the brake tubes in positions where they are protected against damage and heat.
- Install the air tanks so that the drain valves still function well and are easy to reach.

CAUTION: When a brake tube is replaced or jointed, use only genuine International parts of the correct type.

NOTE: On trucks with ABS brakes, the sensor cable must not be jointed. If necessary, it must be completely replaced.

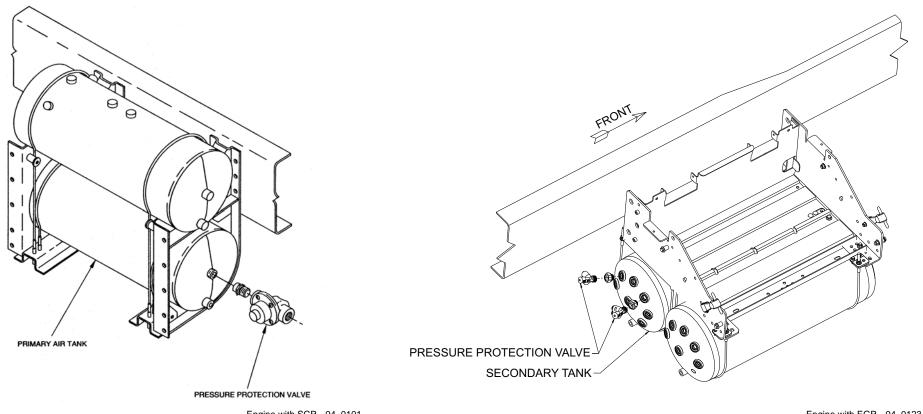
Brake System Schematic

Truck Brake System Code 04091

BRAKES • 04 BRAKE SYSTEM SCHEMATIC JUNE 2016 - 04-3

HX[™] Series Series Body Builder

BRAKES • 04 ROUTING GUIDELINES


Routing Guidelines

If modifications are made to International vehicles with the addition or re-routing of tubing the following guidelines found in the Federal Motor Carrier Safety Regulations Pocketbook, section 393.45, should be followed. Tubing must:

- Be designed and constructed in a manner that insures proper, adequate, and continued functioning of the tubing or hose.
- Be installed in a manner that insures proper continued functioning of the tubing or hose.
- Be long and flexible enough to accommodate without damage all normal motions of the part to which it is attached.
- Be suitably secured against chafing, kinking, or other mechanical damage.
- Be installed in a manner that prevents it from contacting the vehicle's exhaust system or any other source of high temperatures.
- International[®] Route and Clip standards state that tubing shall be a minimum of 5 inches away from the aftertreatment inlet and a minimum of 3" away from the aftertreatment outlet.

Air-Operated Auxiliary Attachments

- The primary air reservoir has two dedicated ports for two-port pressure protection valves (PPV). There will always be a PPV installed in Port "A" shown below. An additional PPV can be ordered from an International dealer and installed into Port "B" shown below.
- The PPV will come installed from the factory if an air suspension or other air-operated device is ordered (i.e., fifth wheel slide, air suspension dump, etc.). Depending on vehicle ordered features; one port may be open. If this is the case, then unplug that port and use the port.
- If all of the ports on the PPV are utilized, then a Quality Connect tee should be installed into the one of the used ports. The recommended tee 3/8-inch x 3/8-inch x 3/8-inch x 3/8-inch stem (International part number 2024458C1) can be ordered from an International dealer.

Engine with SCR - 04_0101

Engine with EGR - 04_0123_PPV

BRAKES • 04

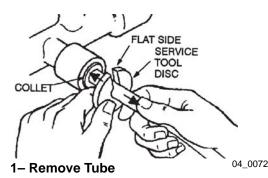
REMOVAL AND INSERTION PROCEDURES FOR TUBING IN QC OR PTC FITTINGS

Removal and Insertion Procedures for Tubing in QC or PTC Fittings

DO NOT ATTEMPT TO DISASSEMBLE TUBING FROM FITTINGS WITH AIR PRESSURE IN THE SYSTEM. FAILURE TO DRAIN SYSTEM OF AIR PRESSURE BEFORE REMOVING COMPONENTS MAY CAUSE PERSONAL INJURY OR DEATH.

Removal of Tube from Fitting

- Use the tube release tool (see graphic 1 below) to remove the tube.
- Push down on the release tool, then pull on the tube. Pushing the tool depresses the fitting collet, allowing it to release the tube. Sometimes the brass tube support will be pulled out of the fitting when the tube is removed. Be sure to reinstall a tube support when installing the tube.


Preparation of Tube for Installation

Inspect the tube end for external scratches, burrs, or cracks. If it is damaged, trim the damaged portion off at an insertion depth mark (see graphic 2 below) or replace the tube. DO NOT reuse a damaged end.

IMPORTANT: Use the tube cutter (supplied in the tool kit) to ensure that the cut is square within 15° to help prevent leakage. Do not use a dull or heavy cutting tool such as side cutters, pocket knife or hack saw which could collapse (flatten) the tube or create O-ring damaging burrs. Do not use the tube cutter to cut anything other than nylon air line tubing. Replace the blade or cutter if the cutting edge becomes dull.


Installing Tube Into The Fitting

- Lubricate the tube end and install it to the correct insertion depth (see graphic 3 below). Install the tube by pushing it straight into the fitting. The insertion depth mark should be flush with the face of the fitting (see graphic 3 below). Gently tug on the tube to make sure it is secured in the fitting.
- Test to make sure the assembly is free from leaks using a soap solution and clean, dry air at system pressure. When performing a bubble test, leakage should not exceed a soap bubble of 1/2-inch (12 mm) in 3 seconds with system air pressure of 100 to 130 psi. If a leak exceeding the above specification is still present, remove and replace the valve, manifold or tee.

2 – Prepare for Installation

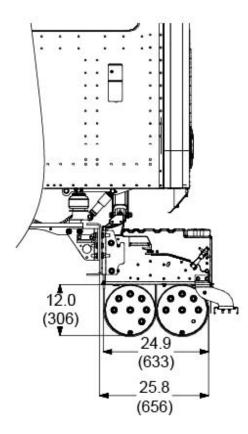
3 – Install Tube into the Fitting ^{04_0074}

Tube Fitting Installation Instructions

The majority of tube fitting connections in the air braked chassis utilize a Quality Connect fitting (fitting integral to an air brake component or plastic fitting) or a PTC fitting (fitting threaded into an air brake component). Both of these fitting types are comprised of a collet which bites into the tube to hold it firmly in place and a fitting O-ring which seals the tube to the valve, manifold or tee body to prevent leakage. To aid in service, a kit is available with tools for each port and tube size used by International.

To assure standardization of tubing used on International vehicles, the following table illustrates tubing color, abbreviations and where that color is used.

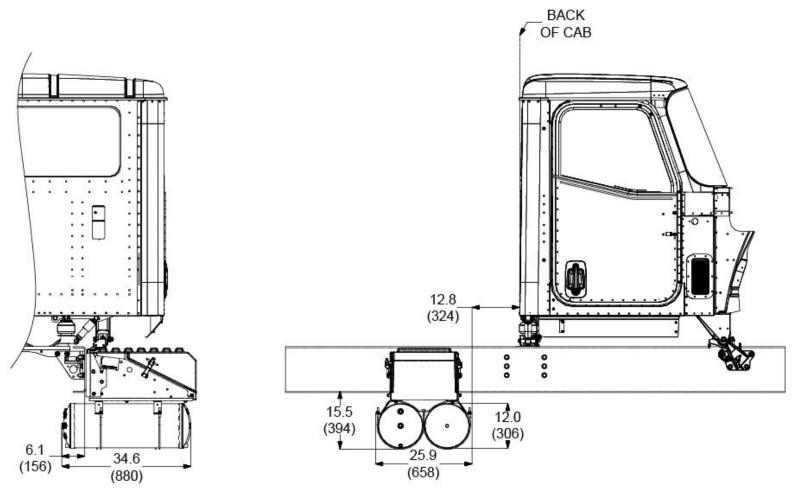
Color	Abbreviation	Where Used
Black	ВК	MV-3, PPDC Exhaust Air Seat Air Horn Air Dryer to Wet Tank Wet tank to Governor
Blue	BL	Trailer Service
Brown	BN	Air Suspension system
Green	GN	Primary Brake system
Orange	OR	Secondary Brake system
Red	RD	Trailer emergency
Silver	SIL	PDL control Governor to Dryer
Tan	TN	Locking differential Traction differential Two-speed axle
White	WH	Solenoid Pack Supply Load Sensing Gauge
Yellow	YL	Spring Brake System, Cab Air Suspension


HX[™] Series Series Body Builder

BRAKES • 04 AIR TANK LOCATION (ALL MODELS)

Air Tank Location (All Models)

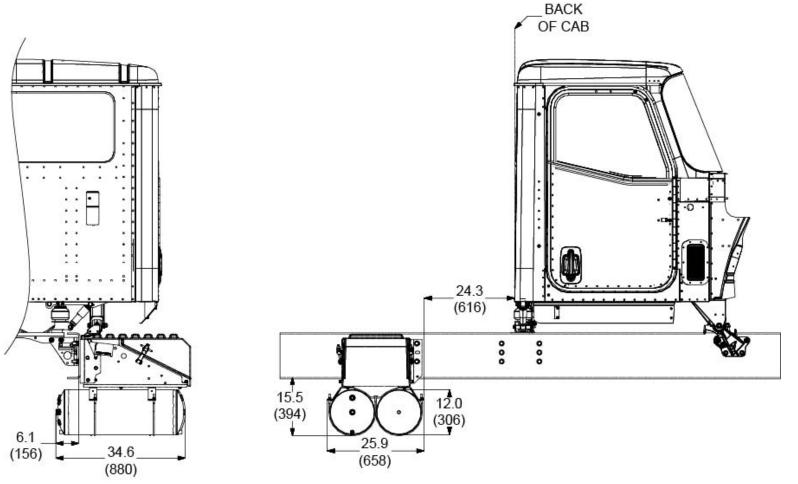
Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08TST)


BACK OF CAB

HX_Air_Tank_w_08tst

Air Tank Location (115 BBC)

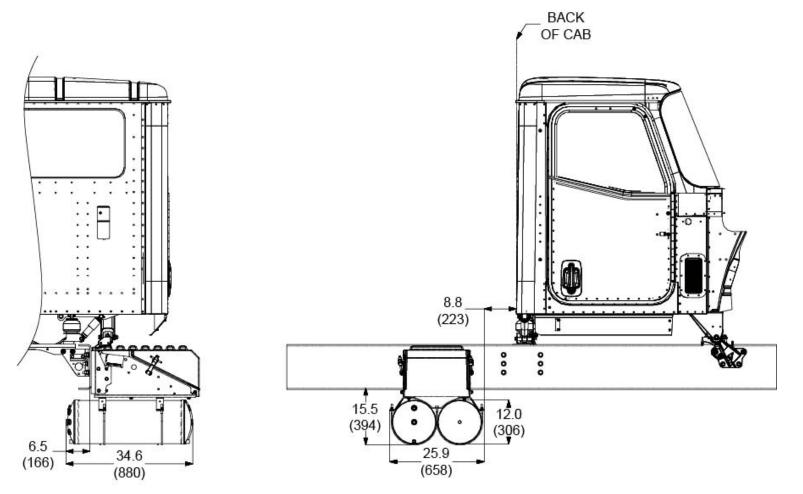
Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08VUK & Horizontal/Vertical Exhaust)


HX_115_Air_Tank_w_08vuk_horiz_vert

HX[™] Series Series Body Builder

BRAKES • 04 AIR TANK LOCATION (115 BBC)

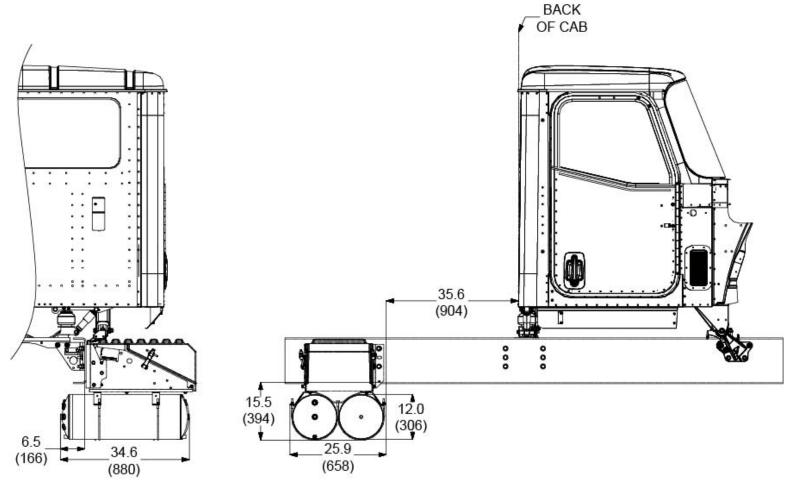
Air Tank Location (115 BBC)


Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08VUK & Vertical/Vertical Exhaust)

HX_115_Air_Tank_w_08vuk_vert_vert

Air Tank Location (114 & 119 BBC)

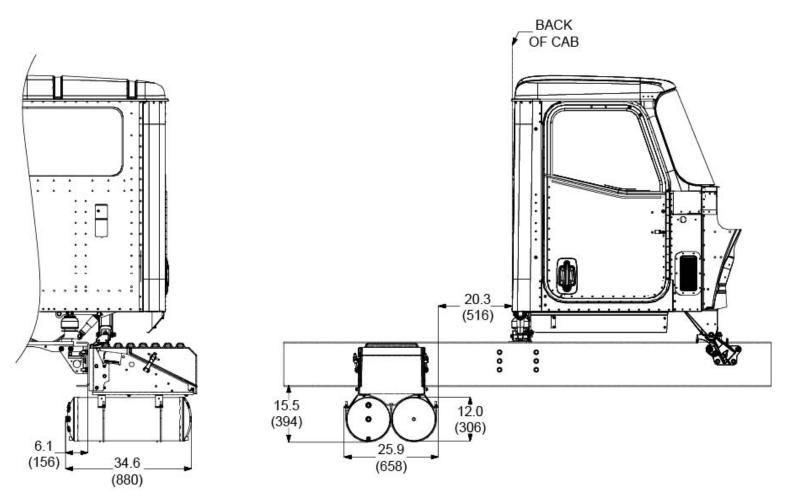
Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08VUK & Horizontal/Vertical Exhaust)


HX_114_119_Air_Tank_w_08vuk_horiz_vert

HX[™] Series Series Body Builder

BRAKES • 04 AIR TANK LOCATION (114 & 119 BBC)

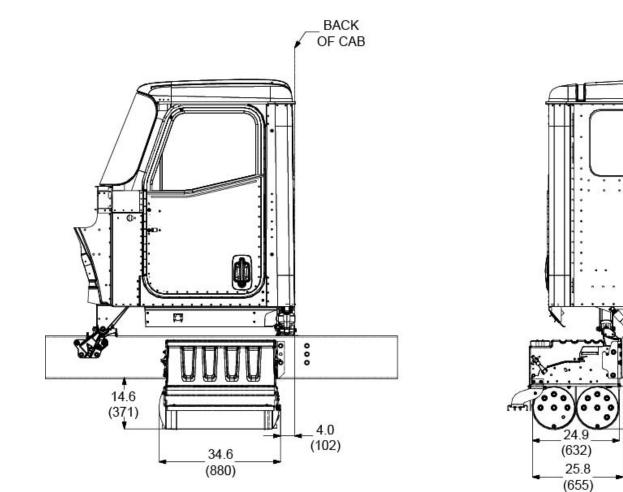
Air Tank Location (114 & 119 BBC)


Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08VUK & Vertical/Vertical Exhaust With 2 Under Cab Fuel Tanks)

HX_114_119_Air_Tank_w_08vuk_vert_vert_&_2uc_ft

Air Tank Location (114 & 119 BBC)

Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08VUK & Vertical/Vertical Exhaust Not With 2 Under Cab Fuel Tanks)

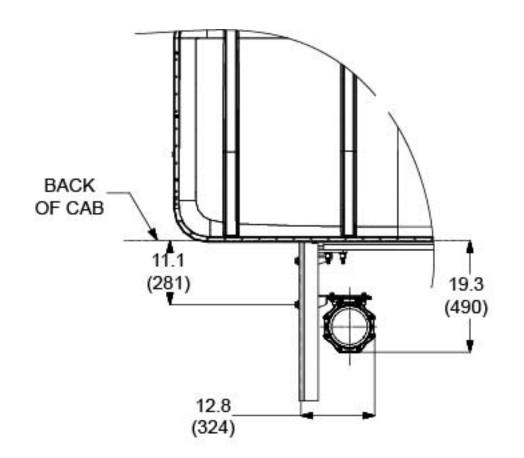

HX_114_119_Air_Tank_w_08vuk_vert_vert_nw_2uc_ft

HX[™] Series Series Body Builder

BRAKES • 04 AIR TANK LOCATION (114 & 119 BBC)

Air Tank Location (114 & 119 BBC)

Mounted Under Battery Box, Outside Right Rail, Back of Cab Perpendicular to Rail (504628 with 08WJN)



HX_114_119_Air_Tank_w_08wjn

12.0 (306)

Air Dryer Bendix AD-9 with Heater (04EBS)

All Models

HX_04ebs

HX [™] Series Series Body Builder	Brakes • 04	JUNE 2016 — 04-15
	AIR DRYER	

HX [™] Series Series Body Builder	BRAKES • 04 Air Dryer	JUNE 2016 — 04-16

A NAVISTAR COMPANY

EXHAUST SYSTEM

Guidelines for Aftertreatment Modifications

All Models

Navistar, Inc. has a responsibility to supply, install and ensure that the engines and aftertreatment emission control devices comply with the certification requirements of the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB). The aftertreatment devices may include a combination of particulate filters, catalysts, catalytic converter, and temperature and pressure sensors, along with other components.

Proper long-term operation of these components requires controlling exhaust stream temperatures and the exhaust flow pattern throughout the system. This controls the required location of the components as well as the insulation of the various parts of the system.

For this reason, application guidelines for aftertreatment and tailpipe installations are much more complex and restrictive than in the past. Navistar, Inc. will ensure correct factory installation of aftertreatment devices to assure compliance with the certification requirements.

Modified systems could damage the engine, aftertreatment system and other truck systems and void the warranty coverage. In that regard, Navistar, Inc. will make it a policy to procure and correctly install the appropriate aftertreatment devices pursuant to applicable specifications and application guidelines. That brings with it the benefit of certified systems that will be fully covered under warranty provided the vehicle is properly maintained and not modified beyond the extent allowed by the Body Builder book.

The following guidelines are meant to clarify the allowable modifications for aftertreatment systems. Please consult applicable federal, state and local laws and requirements in conjunction with this document to ensure compliance to those requirements. Also, refer to applicable vehicle warranty information before performing any modifications to the vehicle. Non-compliance to the requirements of the warranty may nullify it in its entirety.

- Where possible, trucks first and foremost should be ordered directly from the factory that meets the body installation requirements so that the minimum, or no modification of the exhaust system will be required.
- Relocation or modification of the Aftertreatment system or the turbo outlet piping is NOT permitted without approval from Navistar, Inc. and the engine manufacturer. Requests for relocation or modification will be reviewed on a case by case basis.
- Exhaust Gas Temperatures may be as high as 800× C during vehicle operation. Precautions should be taken to ensure that materials used in the vicinity of the exhaust system and exhaust gas stream can withstand these temperatures or are safely shielded.

EXHAUST SYSTEM • 07 GUIDELINES FOR AFTERTREATMENT MODIFICATIONS

MEETING LEGAL REQUIREMENTS

It is the responsibility of the person performing modifications to the vehicle to ensure that the vehicle, in its final configuration, conforms to any applicable law regarding emission control, noise level and applicable safety standards.

TURBO PIPE

The function of the Turbo Pipe is to deliver exhaust gases from the engine to the Aftertreatment Module so that temperature losses are minimized and so that the flow pattern of the exhaust gases maximizes the efficiency of the Aftertreatment Module. Relocation or modification of the turbo outlet piping is NOT permitted without approval from Navistar, inc. and the engine manufacturer. Requests for relocation or modification will be reviewed on a case by case basis. Any modification to this piping without written approval of Navistar, Inc. will significantly reduce the performance of the Aftertreatment Module and VOID any applicable warranty.

If so equipped, heat shields and protective wraps must be maintained on the vehicle to ensure the proper performance of the Aftertreatment Module and for the protection of the installed truck systems.

AFTERTREATMENT MODULE

The function of the Aftertreatment Module is to catch soot exhausted from the engine and convert it to ash. In conjunction, it reduces oxides of nitrogen (NOx) through SCR. It is critical that the all sensors and pressure monitoring wiring remain intact for the Aftertreatment Module to perform as designed. It is critical to maintain the location of the Aftertreatment Module and all sensors as installed from the factory to ensure proper operation. Relocation or modification of the Aftertreatment Module is NOT permitted without approval from Navistar, Inc. and the engine manufacturer. Requests for relocation or modification will be reviewed on a case by case basis. Any modification to this Aftertreatment Module without written approval of Navistar, inc. will significantly reduce the performance of the Aftertreatment module and VOID any applicable warranty.

If so equipped, heat shields and protective wraps must be maintained on the vehicle to ensure the proper performance of the Aftertreatment Module and for the protection of the installed truck systems. In addition, heat shields and protective coverings may not be added to the Aftertreatment module which would restrict airflow to the system.

Never mount any additional harnesses or other equipment to the Aftertreatment Module.

TEMPERATURE CONTROL DEVICE

The function of the Temperature Control Device (if so equipped) is to reduce the exit exhaust gas temperature emitted from the Aftertreatment Device. This device has been specifically designed to draw in cooler air to mix with the hotter exhaust gases. It is critical that the openings in the device that draw in cooler air remain unblocked of debris or other equipment. This device is critical to ensure that the emitted temperatures of the exhaust are minimized. Any modifications to the Temperature Control Device without the written approval of Navistar, Inc. may significantly reduce the efficiency of the Temperature Control Device and significantly increase the emitted gas temperatures, and VOID any applicable warranty.

If so equipped, any installed Temperature Control Device MUST remain as part of the exhaust piping.

Changes to the location of the Temperature Control Device relative to the Aftertreatment Module must meet federal emissions, noise and safety requirements. The responsibility for demonstrating that legal requirements are met when modifications have been made belongs to the modifier of the system.

If changing the location, special attention must be given to maintaining clearances around the exhaust piping, as well as maintaining the structural integrity and exhaust backpressure of the system. Tables included in this document provide recommended clearances and back pressure estimation procedures.

EXHAUST PIPING MODIFICATIONS

Never modify the internal structure of the Turbo Pipe, the Aftertreatment Module or the Temperature Control Device.

When lengthening or shortening tailpipes beyond the Aftertreatment Module, observe the following precautions:

1. Use the same size and material to extend or shorten the original pipe.

• Refer to **Table 1** for proper material and sizing of pipes when extending or shortening tailpipe sections.

2. Adding additional extensions and bends will change internal exhaust gas pressure, which could result in damage to the Aftertreatment Module or other engine components as well as a reduction in fuel economy.

• Use the backpressure values from the engine data sheets to compute the backpressure of the modified exhaust piping. Ensure that the limits are within the data sheet when tested per the backpressure test procedure.

3. Additional piping should be routed so that the Temperature Control Device, if so equipped, is at the end of the exhaust pipe and oriented in the same manner as received from the factory.

The exhaust piping should be routed so that the Temperature Control Device, if so equipped, is at the end of the exhaust pipe and oriented in the same manner as received from the factory.

Route all piping with minimum clearances to other chassis components as shown in Table 2.

HX[™] SERIES SERIES BODY BUILDER

EXHAUST SYSTEM • 07 GUIDELINES FOR AFTERTREATMENT MODIFICATIONS

MOUNTING OF BODY EQUIPMENT

In comparison to vehicles produced prior to 2007, exhaust components surface temperatures and exhaust gas temperatures will typically be higher.

As a result of the increased temperatures, clearances to exhaust components will need to be increased compared to pre-2007 model year clearances.

Typical installation clearances used for pre-2007 model year engines and exhaust systems should be increased by 40% to ensure that body equipment is not damaged by the increased heat of these systems.

Do not mount any Body Equipment within 8 inches (200mm) of the exhaust pipe outlet to avoid damage from hot exhaust gases.

When modifying other chassis systems, maintain clearances shown in the applicable tables to follow.

TAILPIPE EXTENSION, MATERIAL AND PIPE SIZING TABLE 1

Navistar N13				
Pipe Material	409 Stainless Steel			
Pipe Diameter	4"			
Wall Thickness	0.065"			

Cummins ISX				
Pipe Material	409 Stainless Steel			
Pipe Diameter	4"			
Wall Thickness	0.065"			

MINIMUM CLEARANCES BETWEEN EXHAUST SYSTEM COMPONENTS AND OTHER CHASSIS COMPONENTS TABLE 2

Component	Minimum Clearance, in (mm)
Electric Harness	150 (6.0)
Electric Harness (w. heat guard)	100 (4.0)
Mechanical Cable	50 (2.0)
Fuel Tube, metal	150 (6.0)
Fuel Tube, rubber or plastic	150 (6.0)
Brake Tube, metal	100 (4.0)
Brake Tube, rubber or plastic	150 (6.0)
Tire	100 (4.0)
Fuel Tank	100 (4.0)

EXHAUST SYSTEM • 07 MAXIMUM BACKPRESSURE VALUES

Maximum Backpressure Values

NAVISTAR N13

Engine Rating	Maximum Backpressure		
HP	Clean DPF - Worst Case	Clean DPF - Worst Case	
LIE	Configuration (in-Hg)	Configuration (kPa)	
370	7.1	24.1	
390	7.7	26.2	
410	8.1	27.3	
430	8.7	29.5	
475	9.7	32.9	

CUMMINS ISX15

Engine Rating	Maximum Backpressure			
HP	in-Hg	kPa		
455	9.2	31.0		
500	10.1	34.0		
550	11.4	38.0		
600	12.1	41.0		

Refer to the "Backpressure Test Procedure" on page 7.

Backpressure Test Procedure

Test Method for Measuring Exhaust Backpressure

NOTE: The exhaust backpressure is required for a fully assembled system including DPF, SCR device and any diffuser device installed.

- Perform a non-mission regeneration on the DPF system to ensure it is clean prior to checking exhaust backpressure
- Connect a manometer or pressure gauge which reads up to 272 in H2O, 20 in Hg, 10 psi. 508 mm Hg or 68 kPa in a straight section of 4 inch diameter exhaust pipe, 3 to 4 pipe diameters downstream of the exhaust engine outlet flange. Turbulence in the exiting gas flow from VGT turbochargers results in the need to measure exhaust backpressure at this distance from the outlet flange. The port in the exhaust pipe should be smooth and free of burrs to give an accurate pressure reading.
- Determine the engine speed which delivers the maximum exhaust flow. This is the engine speed which should be used for this test. Testing should be conducted at ambient temperatures between 21 to 38 deg C (70 100 deg F).
- Run the engine at full power output on a vehicle chassis dynamometer or a long uphill climb at the correct engine speed for at least 10 minutes or until stabilized power output is achieved, and record the exhaust backpressure reading.
- For industrial engines, load the engine to the speed at which the maximum exhaust flow occurs for at least 10 minutes and record the exhaust backpressure reading.
- If this testing is done on a long hill climb, it may be necessary to repeat the test in different gears or use the vehicle brakes to achieve the desired engine speed. If testing on road, the hill used must be steep enough that with the engine at full throttle, the vehicle speed is steady or dropping when the exhaust backpressure is recorded to ensure the engine is at full power output.
- If engine turbocharger boost pressure is also recorded during this test, the pressure at the turbo compressor outlet can be compared to the Turbo Compressor Outlet Pressure on the Engine Data Sheet to ensure the engine is at full power output. The measured turbocharger boost pressure should be within 75mm Hg (3 in Hg) of the value on the Engine Data Sheet with the engine at full power.

HX[™] SERIES SERIES BODY BUILDER

EXHAUST SYSTEM • 07 BACKPRESSURE TEST PROCEDURE

BACKPRESSURE TEST PROCEDURE (CONT'D)

Exhaust Backpressure Test Results

Engine Model and Power Rating	
Engine Sped for Maximum Exhaust Flow	
Measured Exhaust Back Pressure at Full Power Output:	
-in H2O	
-in Hg	
-psi	
-mm Hg	
-kPa	
Test Location:	
-On Dynamometer?	
-On Road?	

NOTE: When the exhaust back pressure measurement is taken in a pipe diameter other than 4 inches, then the measured values must be adjusted to account for the change.

Allowable Backpressure Tailpipe Modification Worksheet

	Engine:	Navistar® N13	
	Exhaust Configuration:	Switchback Horizontal	
а	Qty of 90× elbows added	x 0.12 =	٦
b	Qty of $60 \times$ elbows added	x 0.11 =	
с	Qty of $45 \times$ elbows added	x 0.09 =	
d	Qty of $30 \times$ elbows added	x 0.07 =	
е	Feet of straight pipe added	x 0.01 =	
g	Temperature Control Device Pressure	1.24	
h	Pipe Exit Pressure	0.87	

Total Modification Backpressure (Add a-h)

1.8			

Allowable Backpressure Limit

Is allowable Backpressure Limit **GREATER** than Total Modification Backpressure?

If YES, Modifications MEET Engine Manufacturer's Guidelines and CAN be performed.

EXHAUST SYSTEM • 07 ALLOWABLE BACKPRESSURE TAILPIPE MODIFICATION WORKSHEET JUNE 2016 — 07-10

Allowable Backpressure Tailpipe Modification Worksheet

	Engine: Exhaust Configuration:	Cummins® ISX15 Horizontal - Vertical	
а	Qty of $90 \times$ elbows added	x 0.12 =	
b	Qty of $60 \times$ elbows added	x 0.11 =	
с	Qty of $45 \times$ elbows added	x 0.09 =	
d	Qty of $30 \times$ elbows added	x 0.07 =	
е	Feet of straight pipe added	x 0.01 =	
g	Temperature Control Device Pressure	1.24	
h	Pipe Exit Pressure	0.87	

Total Modification Backpressure (Add a-h)

1.8

Allowable Backpressure Limit

Is allowable Backpressure Limit **GREATER** than Total Modification Backpressure?

If YES, Modifications MEET Engine Manufacturer's Guidelines and CAN be performed.

Allowable Backpressure Tailpipe Modification Worksheet

Engina

	Engine: Exhaust Configuration:	Vertical - Vertical
а	Qty of $90 \times$ elbows added	x 0.12 =
b	Qty of $60 \times$ elbows added	x 0.11 =
с	Qty of $45 \times$ elbows added	x 0.09 =
d	Qty of $30 \times$ elbows added	x 0.07 =
е	Feet of straight pipe added	x 0.01 =
g	Temperature Control Device Pressure	1.24
h	Pipe Exit Pressure	0.87

Cumminc® ISV15

Total Modification Backpressure (Add a-h)

1.8

Allowable Backpressure Limit

Is allowable Backpressure Limit **GREATER** than Total Modification Backpressure?

If YES, Modifications MEET Engine Manufacturer's Guidelines and CAN be performed.

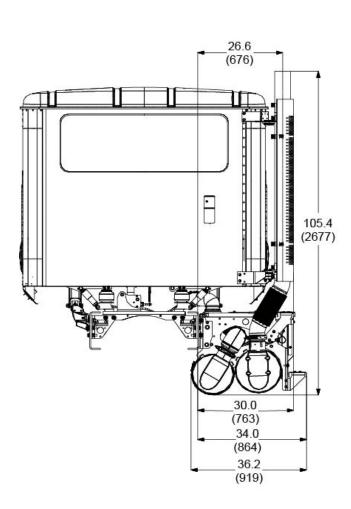
EXHAUST SYSTEM • 07 ALLOWABLE BACKPRESSURE TAILPIPE MODIFICATION WORKSHEET

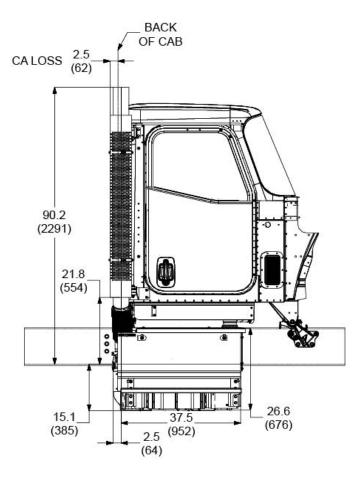
Allowable Backpressure Tailpipe Modification Worksheet

	Engine: Exhaust Configuration:	Cummins® ISX15 Switchback Horizontal	
а	Qty of 90× elbows added	x 0.12 =	
b	Qty of $60 \times$ elbows added	x 0.11 =	
с	Qty of $45 \times$ elbows added	x 0.09 =	
d	Qty of $30 \times$ elbows added	x 0.07 =	
е	Feet of straight pipe added	x 0.01 =	
g	Temperature Control Device Pressure	1.24	
h	Pipe Exit Pressure	0.87	

Total Modification Backpressure (Add a-h)

1.8


Allowable Backpressure Limit

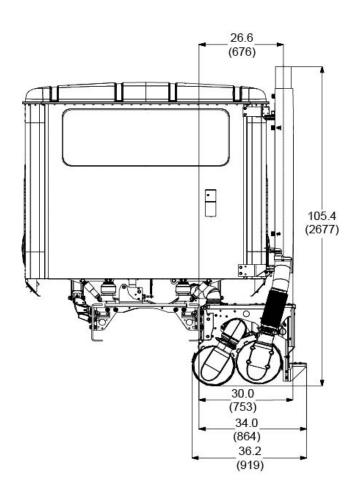

Is allowable Backpressure Limit **GREATER** than Total Modification Backpressure?

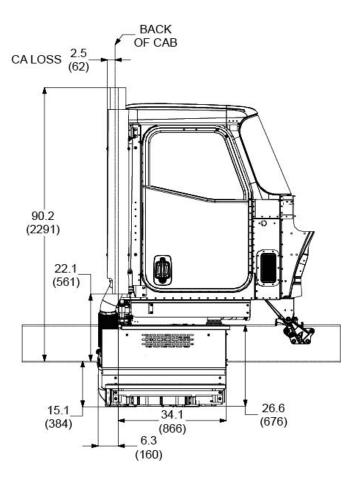
If YES, Modifications MEET Engine Manufacturer's Guidelines and CAN be performed.

Aftertreatment Diagrams (114 & 119 BBC)

Switchback Horizontal Aftertreatment and Single Vertical Tailpipe (Code 07BJU) - Cab Mounted, Right Side

HX_114_119_07bju

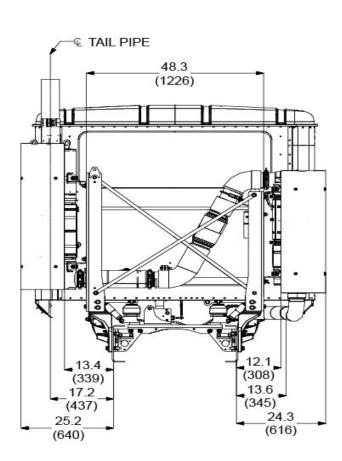

JUNE 2016 — 07-13

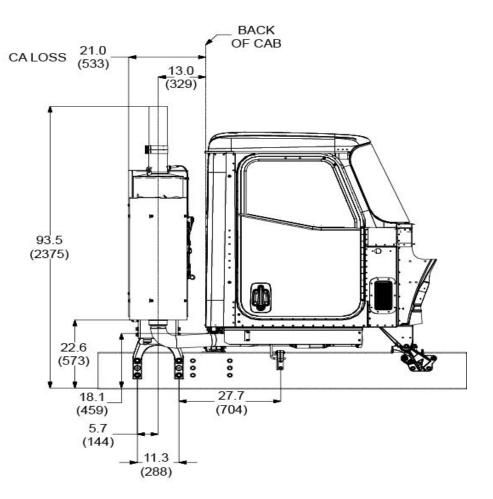

HX[™] Series Series Body Builder

EXHAUST SYSTEM • 07 AFTERTREATMENT DIAGRAMS (114 & 119 BBC)

Aftertreatment Diagrams (115 BBC)

Switchback Horizontal Aftertreatment and Single Vertical Tailpipe (Code 07BJU) - Cab Mounted, Right Side



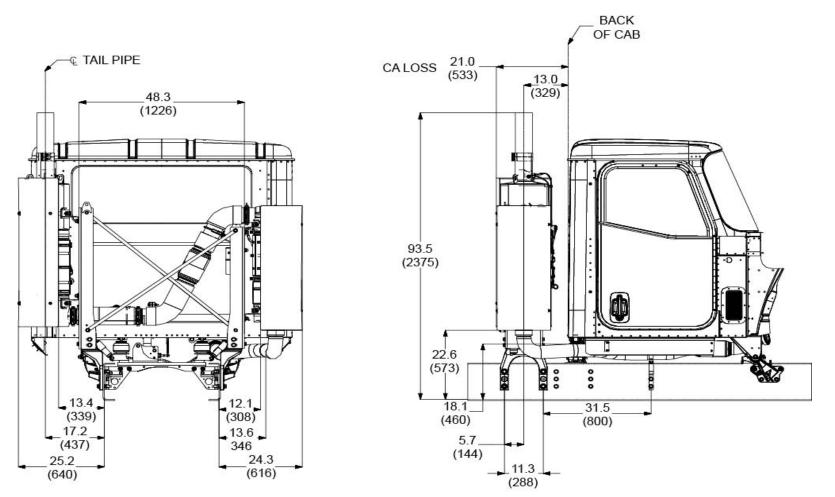


HX_115_07bju

Aftertreatment Diagrams (114 & 115 BBC)

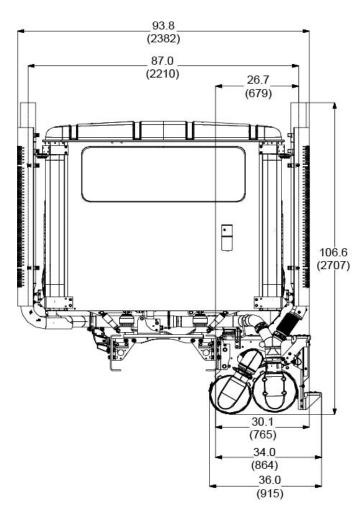
Switchback Vertical Aftertreatment and Single Vertical Tailpipe (07BJX) - Frame Mounted, Left and Right Side

HX_114_115_07bjx


JUNE 2016 - 07-15

HX[™] Series Series Body Builder

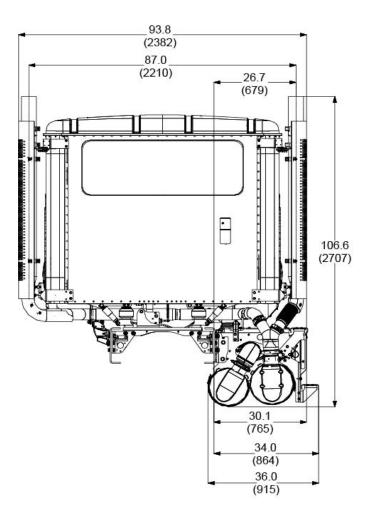
EXHAUST SYSTEM • 07 AFTERTREATMENT DIAGRAMS (114 & 119 BBC)

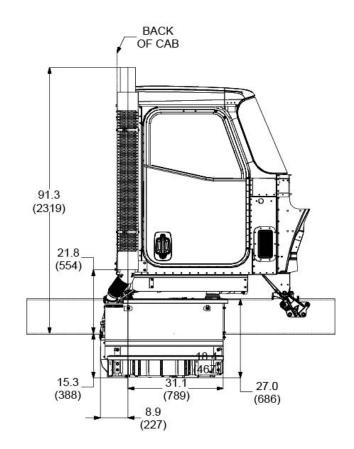

Aftertreatment Diagrams (119 BBC)

Switchback Vertical Aftertreatment and Single Vertical Tailpipe (07BJX) - Frame Mounted, Left and Right Side

Aftertreatment Diagrams (114 & 119 BBC)

Switchback Horizontal Aftertreatment and Dual Vertical Tailpipes (07DXM) - Cab Mounted, Right Side Under Cab

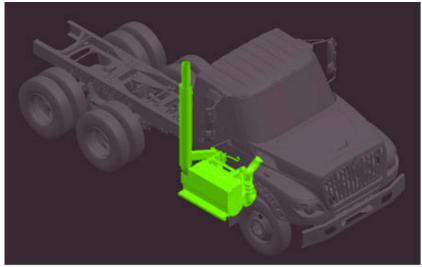



HX_114_119_07dxm

EXHAUST SYSTEM • 07 AFTERTREATMENT DIAGRAMS (114 & 119 BBC)

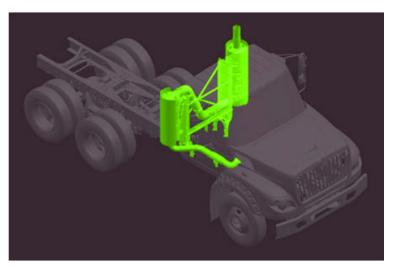
Aftertreatment Diagrams (115 BBC)

Switchback Horizontal Aftertreatment and Dual Vertical Tailpipes (07DXM) - Cab Mounted, Right Side Under Cab



HX_114_119_07dxm

Exhaust System


General Exhaust Information

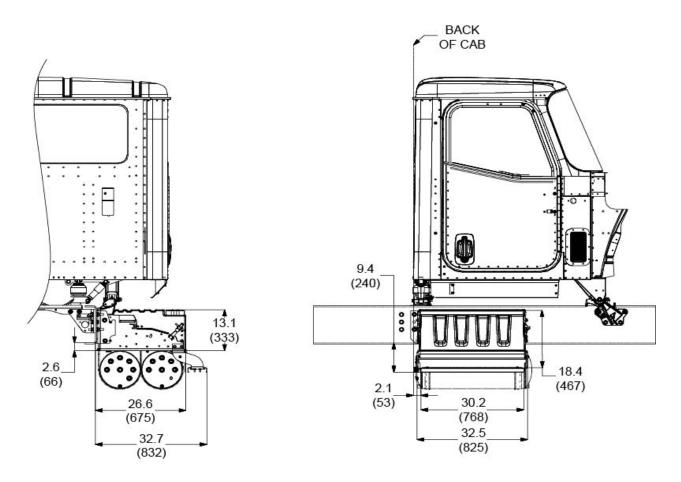
Navistar, Inc. will offer three main DPF and SCR exhaust systems. A right hand under cab DPF and SCR system (switchback) with horizontal or vertical tailpipes, with both catalyst located underneath the cab access steps. A horizontal DPF and SCR with horizontal or vertical tailpipes, which is installed along the right hand rail. A vertical/vertical independent DPF and SCR located vertically back of cab on stanchion brackets.

Heavy Duty Severe Service with Switchback with Vertical Tailpipe

15_0211

Heavy Duty with Vertical Vertical with Vertical Tailpipe

15_0214


Body Builders **must not** modify (including altering, substituting, and relocating) the DPF/SCR catalyst and the pre DPF/SCR exhaust piping. The downstream SCR catalyst exhaust may be modified, however using smaller diameter piping or piping with numerous bends is not recommend as the backpressure specification of the system may be exceeded causing engine power loss or shutdown.

ELECTRICAL

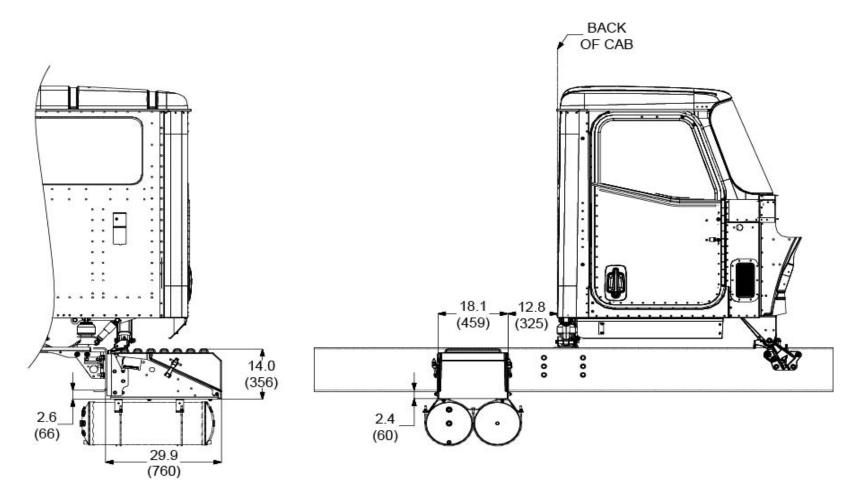
Battery Box Location

All Models

Mounted Right Side Under Cab; 30" Wide; 2, 3, or 4 Battery Capacity (08TST)

HX_08tst_bb

ELECTRICAL • 08 BATTERY BOX LOCATION

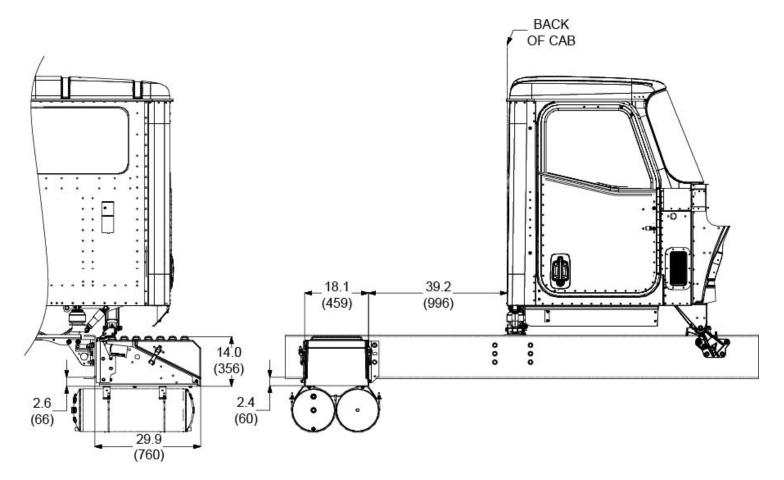

HX[™] Series Series Body Builder

ELECTRICAL • 08 BATTERY BOX LOCATION

BATTERY BOX LOCATION

114 & 119 BBC Models

Mounted Right Side Back of Cab - 18" Wide; 2, 3, or 4 Battery Capacity (08VUK) - Horizontal/Vertical Exhaust

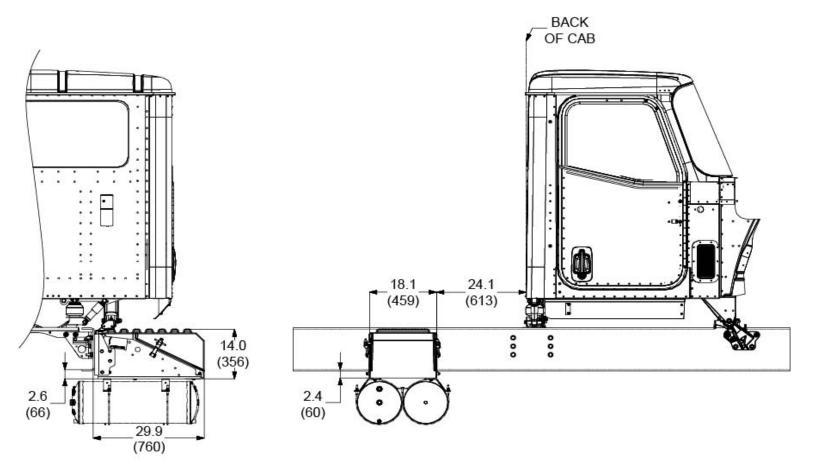


HX_114_119_08vuk_bb_horiz_vert

BATTERY BOX LOCATION

114 & 119 BBC Models

Mounted Right Side Back of Cab - 18" Wide; 2, 3, or 4 Battery Capacity (08VUK) - Vertical/Vertical Exhaust & 2 Under Cab Fuel Tanks

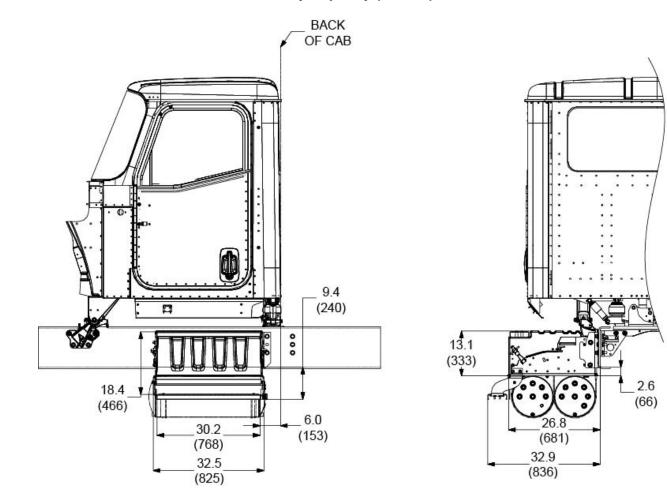

HX_114_119_08vuk_bb_vert_vert

ELECTRICAL • 08 BATTERY BOX LOCATION

BATTERY BOX LOCATION

114 & 119 BBC Models

Mounted Right Side Back of Cab - 18" Wide; 2, 3, or 4 Battery Capacity (08VUK) - Vertical/Vertical Exhaust Not With 2 Under Cab Fuel Tanks



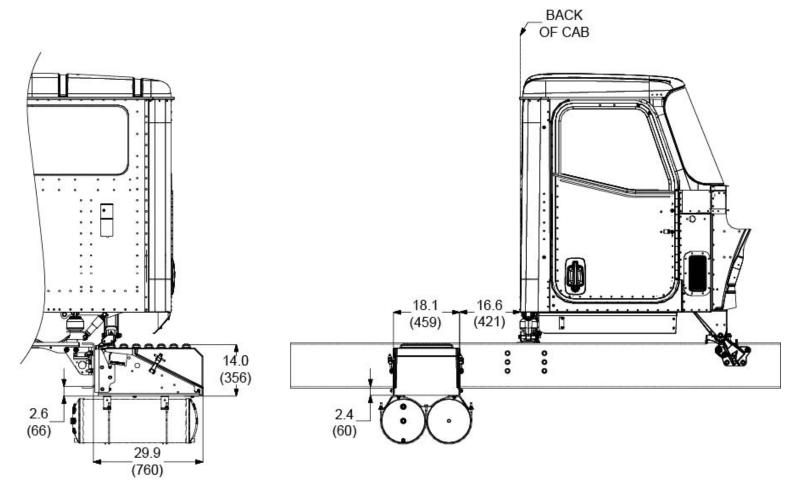
HX_114_119_08vuk_bb_vert_vert_nw_2uc_ft

BATTERY BOX LOCATION

114 & 119 BBC Models

Mounted Left Side Under Cab - 30" Wide; 2, 3, or 4 Battery Capacity (08WJN)

HX_114_119_08wjn_bb


ELECTRICAL • 08 BATTERY BOX LOCATION

ELECTRICAL • 08 BATTERY BOX LOCATION

BATTERY BOX LOCATION

115 BBC Models

Mounted Right Side Back of Cab - 18" Wide; 2, 3, or 4 Battery Capacity (08VUK) - Horizontal/Vertical Exhaust

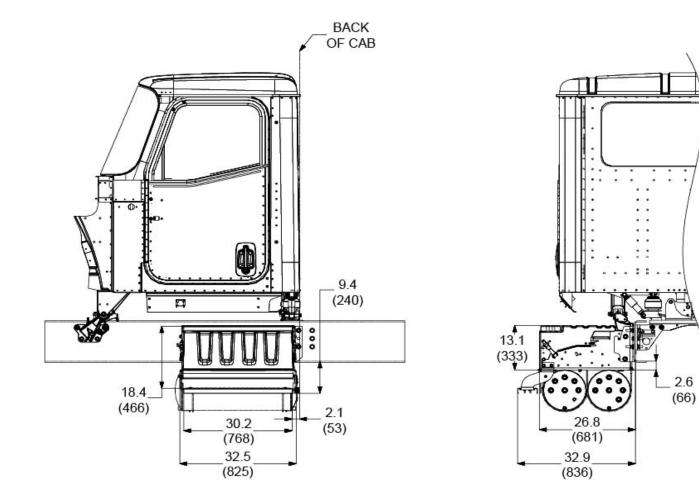
HX_115_08vuk_bb_horiz_vert

BATTERY BOX LOCATION

115 BBC Models

Mounted Right Side Back of Cab - 18" Wide; 2, 3, or 4 Battery Capacity (08VUK) - Vertical/Vertical Exhaust

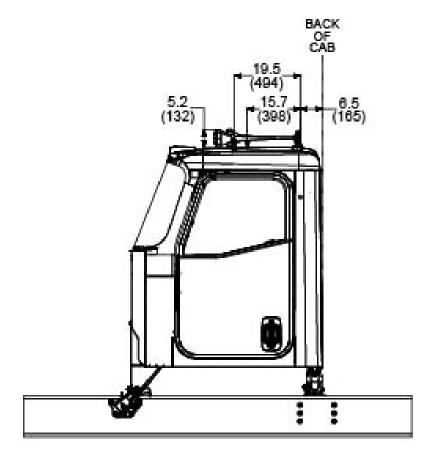
HX_115_08vuk_bb_verti_vert

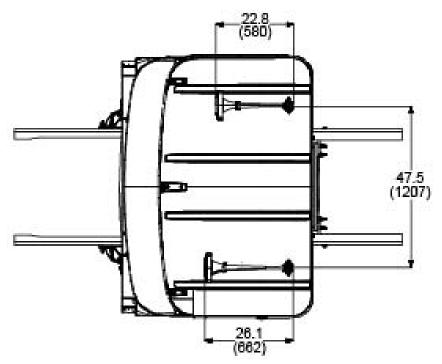

ELECTRICAL • 08 BATTERY BOX LOCATION

ELECTRICAL • 08 BATTERY BOX LOCATION

BATTERY BOX LOCATION

115 BBC Models


Mounted Left Side Under Cab - 30" Wide; 2, 3, or 4 Battery Capacity (08WJN)



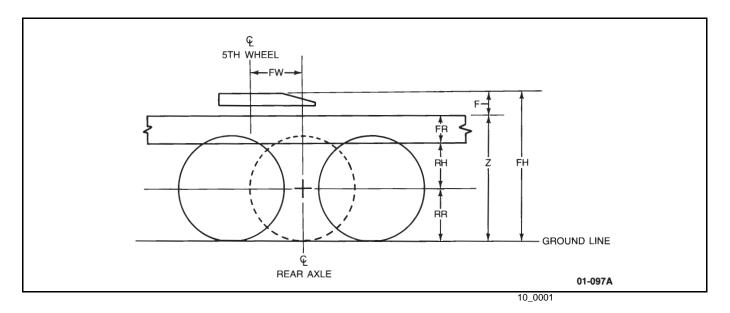
HX_115_08wjn_bb

Roof Mounted Air Horn Location

All Models

HX_Roof_Mounted_Air_Horn

ELECTRICAL • 08 ELECTRICAL CIRCUIT DIAGRAMS


Electrical Circuit Diagrams

For electrical body builder integration, refer to ISIS.

FIFTH WHEEL

Fifth Wheel Height Calculations

All Models

Calculate the fifth wheel height (measured from the ground) using the following formula:

FH = Z + F

(for unloaded chassis)

where:

- = Fifth Wheel Height (from ground to top of 5th wheel) RR + RH + FR + F
- = Frame Height (@ centerline oFf rear axle with an unloaded chassis)
- = Distance from the top of the frame rails to the top of the fifth wheel
- = Frame Rail Overall Height
- = Ride Height of Rear Suspension
- = Rolling Radius

FIFTH WHEEL • 10 FIFTH WHEEL HEIGHT CALCULATIONS

FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION

Fifth Wheel Mounting Information

Outlined below are recommended guidelines for installation of fifth wheels on vehicles. The more common combinations of frame, suspension, fifth wheel and fifth wheel offset dimensions are covered in this section. For mounting applications not covered in this section, refer to the fifth wheel manufacturer for installation instructions.

NOTE: It must be recognized that the ultimate responsibility for the durability and security of the fifth wheel mounting lies with the installer/user. Therefore, the installer/user is cautioned to consult the fifth wheel manufacturer's installation recommendations and whatever legal requirements and regulations are applicable.

It is also the responsibility of the installer/user to make sure that the vehicle frame is adequate for the fifth wheel offset location from the centerline of the single rear axle (4 x 2 vehicles) or tandem rear axle (6 x 4 vehicles).

Precautions

As with any after-market modification, care must be taken when installing a fifth wheel. The following precautions must be taken when installing a fifth wheel.

CAUTION: Do not weld or drill the top or bottom flanges of the vehicle frame. Welding or drilling the flanges will severely weaken the frame.

Do not drill frame sidemember(s) other than as specified in "FRAMES - Drilling or Notching".

Fifth wheel attachments must not be welded directly to the sidemember.

Maintenance

The fifth wheel should be properly maintained to ensure proper operation. The following is a general guideline for maintaining the fifth wheel.

1. Always keep the track of sliding fifth wheels as clean as possible.

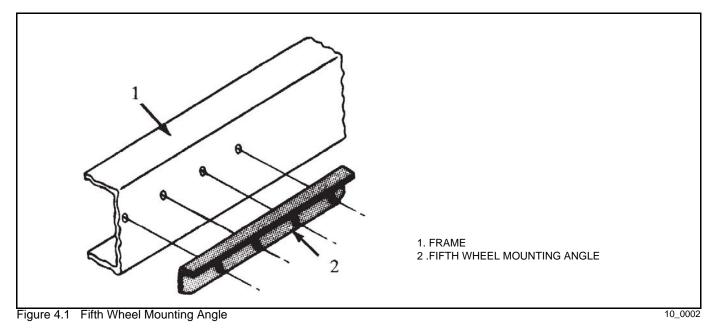
Periodically lubricate all moving parts of fixed and sliding fifth wheels.

- 2. Inspect fifth wheel for proper operation.
- 3. Inspect fifth wheel for damaged or missing parts. Replace as required.
- 4. Be sure all bolts retaining fifth wheel assembly to vehicle frame are properly tightened.

Replacement

REMOVE

- 1. Remove all bolts retaining fifth wheel to mounting angle.
- 2. Remove fifth wheel assembly from vehicle frame.


INSTALL

- 1. Position fifth wheel assembly on mounting angles. Be sure to properly align bolt holes in angle bracket to fifth wheel.
- 2. Install all retaining bolts and tighten to the specified torque.

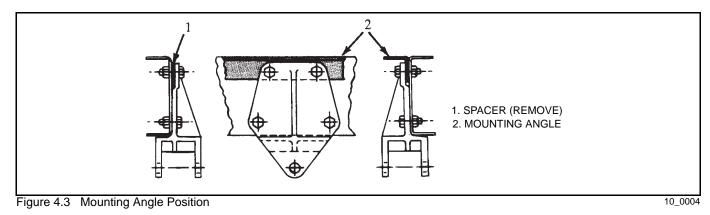
Mounting

MOUNTING ANGLES

The use of mounting angles to mount the fifth wheel to the vehicle frame is recommended. Mounting angles provide for more direct transfer of the load to the frame sidemembers for better stress distribution. Some fifth wheels incorporate integral mounting angles as part of the fifth wheel assembly.


HX[™] SERIES SERIES BODY BUILDER

FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION


Mounting angles must be made of steel conforming to SAE J410, grade 965X, 0.312 inch (8 mm) thick; or ASTM A572, grade 50, 0.38 inch (9.6 mm) thick; or conform to fifth wheel manufacturer's specifications that cover your particular circumstances.

It is permissible to cut mounting angles to provide clearance for spring mounting brackets, etc. Cutouts in the vertical flanges of the mounting angles should be minimized in number and size. Cutouts must be rounded at the inside corners. Inner radii of cutouts should be 0.5 inch (13 mm) minimum; 0.75 inch (19.0 mm) radii are preferred.

To make cutouts in mounting angles, drill holes at radii of cutouts. Then, saw or torch cut to remove remaining material. Cut edges should be ground smooth.

Some vehicles have spring mounting brackets designed to permit installation of fifth wheel mounting angle between the spring bracket and vehicle frame. Remove factory installed spacers to install mounting angles. Re-tighten bolts as specified in the Torque Chart.

Mounting angles should be secured to frame sidemembers using quantity and spacing of bolts as determined by following the guidelines provided in this section.

Mounting Bolts

The use of phosphate and oil coated SAE Grade 8 flanged fasteners is recommended. Where flanged fasteners are not available, the use of hardened steel flat washers under bolt head and nut is recommended.

Where locations of mounting bolts are limited by cutouts, the new bolt pattern should conform as closely as possible to recommendations in terms of number of fasteners, edge distances and spacings.

For horizontal bolt applications (mounting angle-to-frame sidemember), use 5/8-inch (16 mm) diameter bolts. Tighten nuts as specified in the "Bolt Torque Chart (Phosphate and Oil Coated)" (Table 4.1).

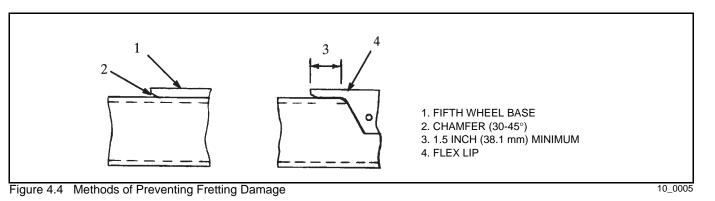
For vertical bolt applications (fifth wheel-to-mounting angle, fifth wheel-to-support plate, fifth wheel-to-cross tie, cross tie-to-mounting angle), use 3/4-inch (19 mm) diameter bolts. These bolts must be flanged head or hex head with hardened flat washers. Tighten nuts as specified in "Bolt Torque Chart (Phosphate and Oil Coated)" (Table 4.1).

Torque

Bolt Size (Type 8)	Specified Torque					
	Flange	e Head	Hex Head			
	Ft-Lb.	N-m	Ft-Lb.	N-m		
5/8	200-240	271-325	145-175	197-237		
3/4	300-370	406-502	250-300	339-406		

 Table 4.1

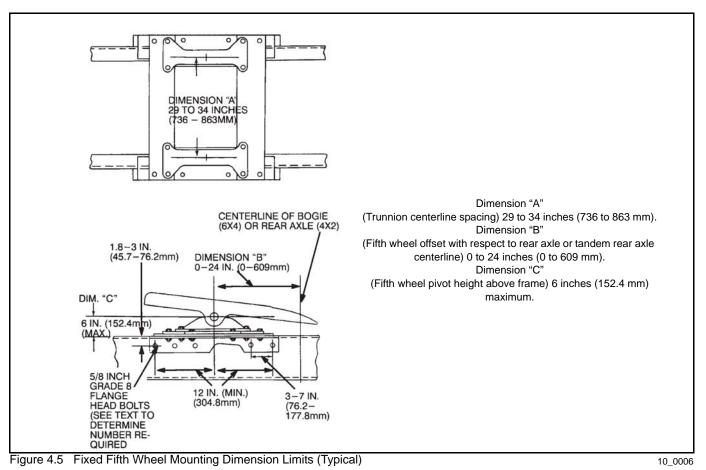
 Bolt Torque Chart (Phosphate and Oil Coated)


NOTE: Some sliding and fixed fifth wheels are designed to use 5/8-inch (16 mm) diameter vertical bolts. These are acceptable where specified by design.

Care must be taken to prevent fretting (chafing) damage to frame top flange by sharp edges on fifth wheel mounting parts. Figure 4.4 illustrates methods of preventing fretting (chafing) damage at leading and trailing edges. These methods include:

- 1. Chamfering the edges of fifth wheel mounting parts contacting frame top flange.
- 2. Use of a "flex-lip" to gradually diminish contact forces.

FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION


FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION

Fifth wheel and mounting parts should be positioned on the vehicle frame to provide maximum contact between the parts which transfer the vertical load onto the upper flange of the frame. Clamp to assure contact before tightening bolts.

Fixed (Non-Sliding) Fifth Wheels

Typical installations of fixed (non-sliding) fifth wheels are illustrated in Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10. Mounting angles should be secured to frame sidemembers with a minimum of five bolts per side with bolt spacing as shown in Figure 4.5. Recommended fixed fifth wheel mounting dimension limits are shown in Figure 4.5. These limits are as follows:

Be sure to refer to the segments in this section for mounting angle and cutout information, bolt sizes and torque specifications and corrosion protection on aluminum frames.

FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION

FAILURE TO FOLLOW THE RECOMMENDED PROCEDURES IN THIS SECTION MAY RESULT IN DAMAGE TO THE VEHICLE FRAME AND POSSIBLE INJURY TO THE OPERATOR.

For vehicle frame assemblies without bogie gussets or "C" channel frame reinforcements, install a set of flat cross ties as shown in Figure 4.6 and Figure 4.7.

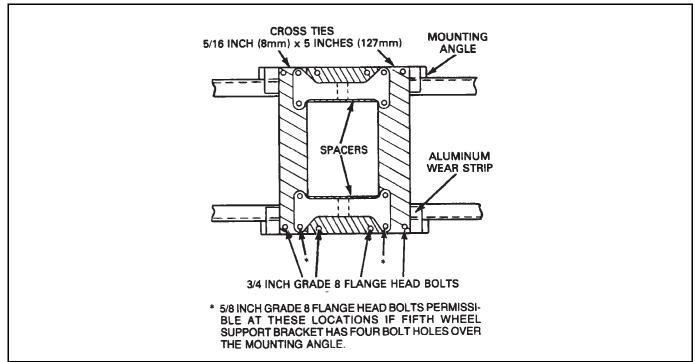
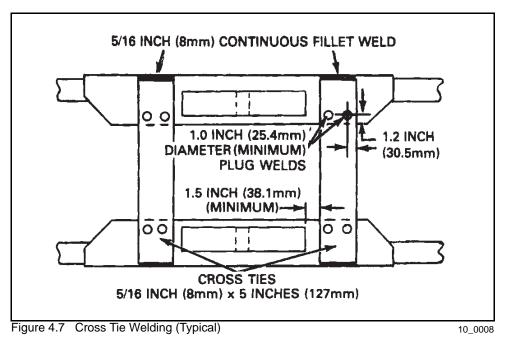
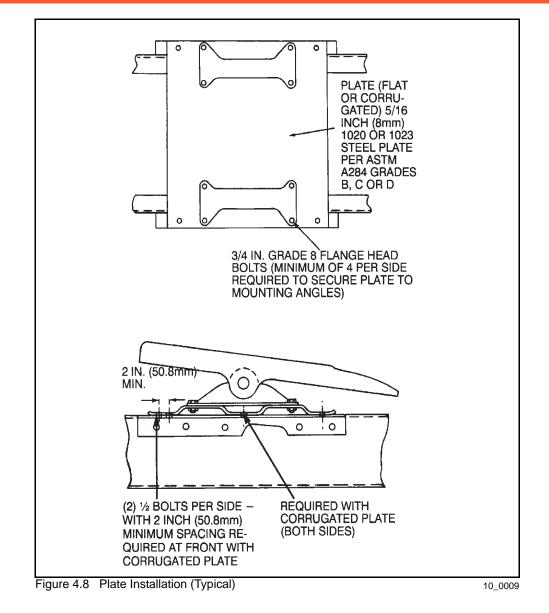
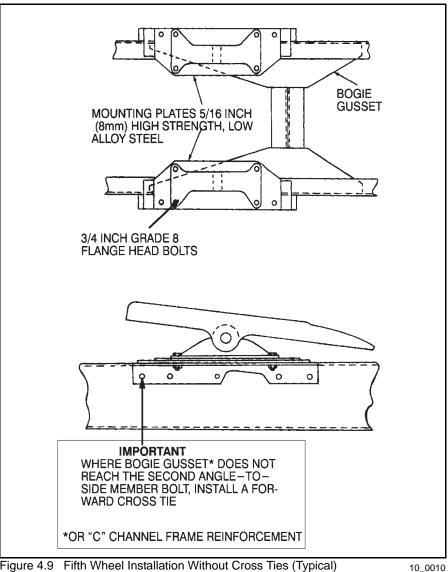



Figure 4.6 Cross Tie Installation (Typical)

10_0007

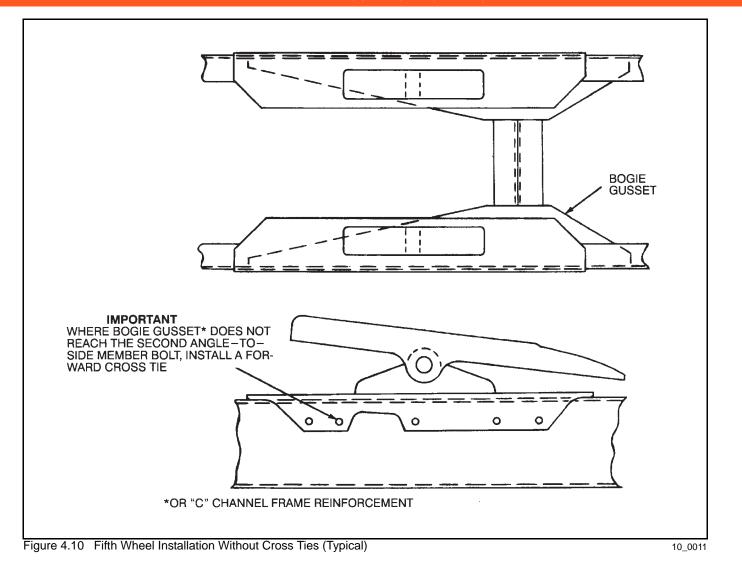
For bolted base type fifth wheels, bolt the cross ties and spacers as shown in Figure 4.6. For fifth wheels with integral mounting angle, weld the cross ties as shown in Figure 4.7.


Cross ties should be a minimum of 0.31 inch (8.0 mm) thick x 5 inches (127 mm) wide. Recommended material is 0.31 inch (8.0 mm) thick HSLA 80,000 PSI yield material (SAE 980X).


For bolted base type fifth wheels, a single flat plate or a corrugated plate can be used instead of cross ties. The flat plate should have the bolt pattern shown in Figure 4.8 (top view). The corrugated plate should be installed as shown in Figure 4.8.

For vehicle frame assemblies which have bogie gussets (such as a typical Hendrickson suspension) many fifth wheel installations may be made without cross ties as shown in Figure 4.9 and Figure 4.10. Cross ties may be required in some cases, as indicated.

FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION



FIFTH WHEEL • 10 FIFTH WHEEL MOUNTING INFORMATION

Sliding Fifth Wheels

These guidelines apply to sliding fifth wheel assemblies where the rails or tracks are tied together on a mounting plate or with cross ties. A typical installation of a sliding fifth wheel is illustrated in Figure 4.11.

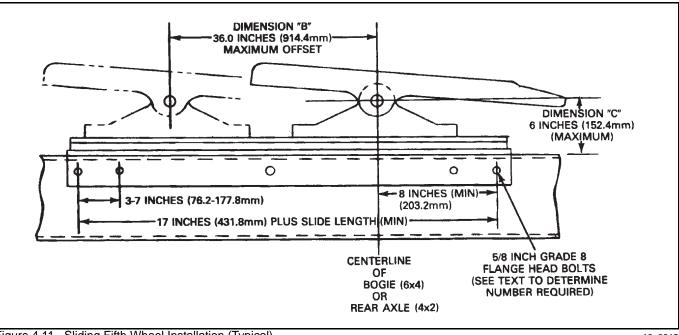


Figure 4.11 Sliding Fifth Wheel Installation (Typical)

10_0012

Mounting angles should be secured to frame sidemembers with bolts, the minimum number of which are to be determined by dividing the distance between the front and rear bolt holes, as shown in Figure 1.12, by 7.0 inches (177.8 mm) and adding 1.

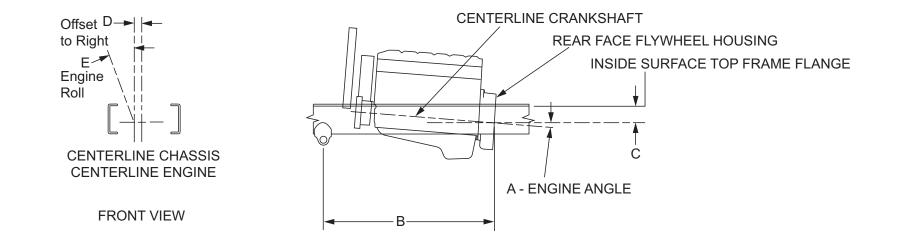
Recommended sliding fifth wheel mounting dimension limits are as follows:

Dimension "B" (Fifth wheel offset with respect to bogie centerline) 0 to 36 inches (0 to 914 mm) maximum.

Dimension "C" (Fifth wheel pivot height above frame) 6.0 inches (152.4 mm) maximum.

Sliding fifth wheels, because of their length and construction techniques, are prone to warping and misalignment. This along with vehicle frame variations makes it necessary to check and correct for proper fit where needed.

JUNE 2016 — 10-14



A NAVISTAR COMPANY

ENGINE

Engine Location

All Models

Engine	Frame	А	В	С	D	E
	Tane	6x4, 8x6	6x4, 8x6	6x4, 8x6	U	E
Navistar N13	10"	3.5°	54.68"	2.86"	0.5"	0°
	12"	3.5°	54.68"	4.86"	0.5"	0°
0	10"	3.5°	64.23"	2.86"	0.5"	0°
Cummins ISX15	12"	3.5°	64.23"	4.86"	0.5"	0°

ENGINE • 12 ENGINE PORT LOCATION

Engine Port Location

Rear View

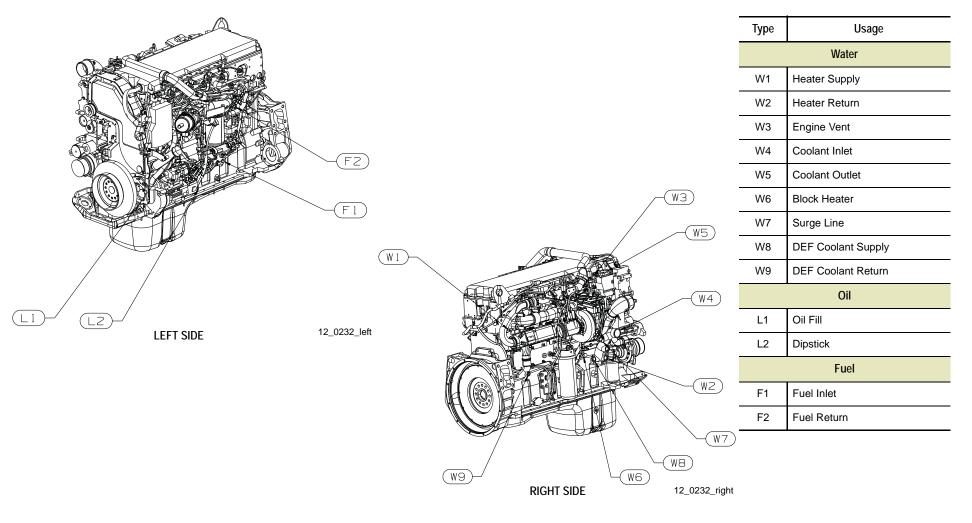
Туре	Usage			
Water				
W1	Cab Heater Supply			
W2	Heater Supply			
W3	Cab Heater Return			
W4	Engine Vent			
W5	Engine Vent			
W6	Low Temp. Radiator Return			
W7	Low Temp. Radiator Supply			
W8	DO NOT USE THIS COOLING CIRCUIT			
W9	Coolant Inlet			
W10	Block Heater			
W11	Surge Line			

DIAGRAM AND LEGEND PENDING

ENGINE PORT LOCATION

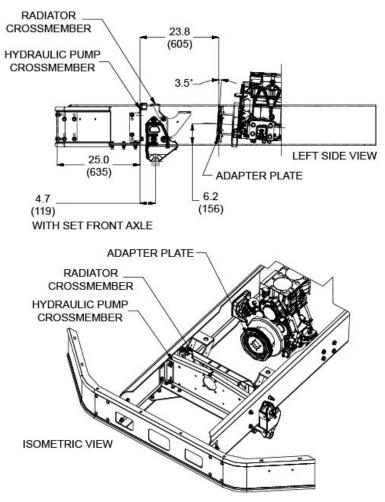
Navistar[®] N13 Front View

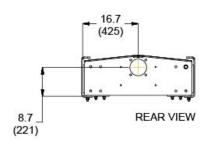
Туре	Usage				
Water					
W12	Coolant Outlet				
W13	Auxiliary Coolant Supply				
Oil					
L1 Oil Fill					
L2 Dipstick					
Fuel					
F1 Fuel Supply					
F2 Fuel Return					


DIAGRAM AND LEGEND PENDING

ENGINE • 12 ENGINE PORT LOCATION JUNE 2016 - 12-3

ENGINE • 12 ENGINE PORT LOCATION


ENGINE PORT LOCATION



PTO Mounting

114 BBC SFA Models

(Only Frame Rail and Hydraulic Pump Crossmember Shown)

HX_SFA_114BBC_PTO_MTG

JUNE 2016 — 12-5

HX [™] Series Series Body Builder	Engine • 12	JUNE 2016 — 12-6
	PTO MOUNTING	

A NAVISTAR COMPANY

REAR AXLES AND REAR SUSPENSIONS

REAR AXLE TREAD

All Models

H TREAD + D.S. + TIRE SECT→→		= Distance (width) between vertical centerlines of single tires at opposite ends of axle, or between vertical centerlines of dual spacing (D.S.) at opposite ends of axle.
D.S. TREAD - D.S TIRE SECT	(Tire Section)	= Overall width of new tire at top of tire under maximum load, including 24-hour inflation growth, and including protective side ribs, bars and decorations recommended by tire manufacturer.
	(Dual Spacing)	= Dimension (width) between vertical centerlines of two tires (duals) assembled at one end of an axle.
	(Tread plus Dual Spacing plus Tire Section)	= Overall width of axle, dual rims, and tire assembly at top of tires under load.
	(Tread minus Dual Spacing minus Tire Section)	= Distance (width) between near sides of inner tires of dual assembly at top of tires under load.
	(Static Loaded Radius)	= Distance from ground to centerline of hub when tires are correctly inflated and under maximum load recommended by tire manufacturer.
Dual Tiroa 14 0093		

Dual Tires

14_0093

The charts shown here list tread information for various wheel/axle combinations. Tread dimensions are not dependent on tire size. Other dimensions explained here are related to tread and require tire dimensions. For tire dimensions, please contact your tire supplier or refer to the International Sales Data Component Book (PDB-70000).

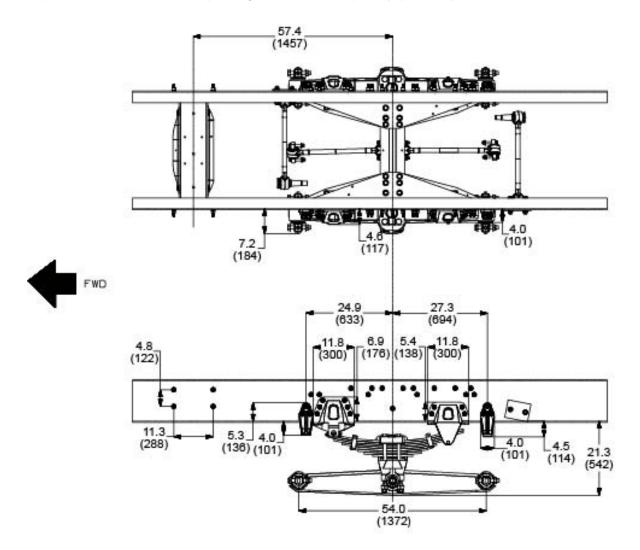
Rear Axle Tread

All Models

Wheel/Rim				Axle Code				
Rim Type Size	Sizo	Material -	Dual Spacing *	- 14GRM 14GRJ, 14GTT, 14GRU, 14GUV	14GRJ, 14GTT,	14HRG	14GJJ, 14GJK, 14GJN, 14GRD, 14GRP, 14GRS, 14GTS, 14HRA, 14HRC, 14HRE, 14HRH	14GGU, 14GRP, 14GRR, 14GTW, 14GVJ, 14GVK, 14GVL, 14GVM, 14GVN, 14GVR, 14GVU, 14GVY, 14GVZ, 14HRL, 14HRM, 14HRW
	Size		Cast or Centrifuse		14GTU, 14GUV			
		Steel	13.24	72.42	74.16	78.17	72.54	73.30
	22.5 x 8.25	Aluminum	13.18	73.41	75.15	79.07	73.44	74.20
	22.5 x 9.00	Steel	14	72.79	74.53	78.55	72.92	73.68
	22.3 X 9.00	Aluminum	14	73.50	75.24	79.26	73.63	74.39
Disc	22.5 x 12.25	Steel	N/A	72.79	74.53	78.55	72.92	73.68
	22.5 X 12.25	Aluminum	N/A	72.66	74.40	78.42	72.79	73.55
-	22.5 x 13.00 -	Steel	N/A	72.79	74.53	78.55	72.92	73.68
		Aluminum	N/A	72.66	74.40	78.42	72.79	73.55
	24.5 x 8.25	Steel	13.24	72.42	74.16	78.17	72.54	73.30

NOTE: Dual Spacing is always the same between cast and centrifuse. Tread length decreases by approximately -0.5 in. with centrifuse drums.

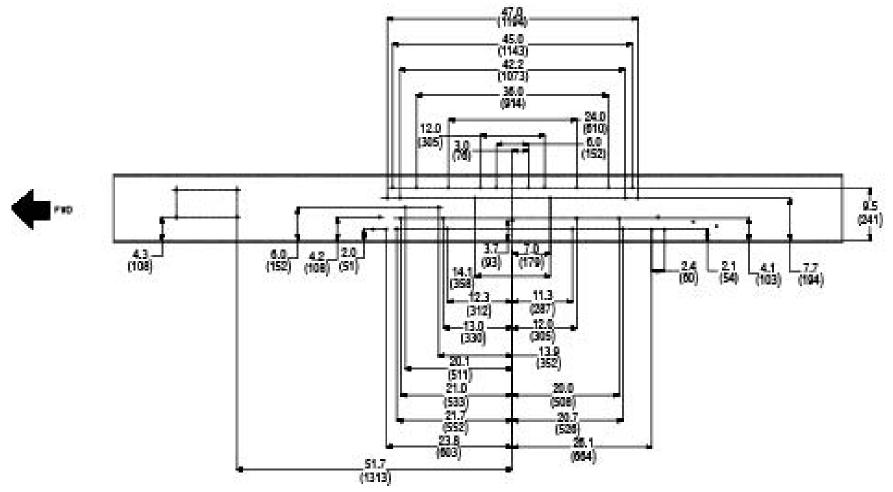
LIFT AXLES


DIAGRAMS PENDING

REAR AXLES AND REAR SUSPENSIONS • 14 LIFT AXLES LIFT AXLE BRACKET LOCATION

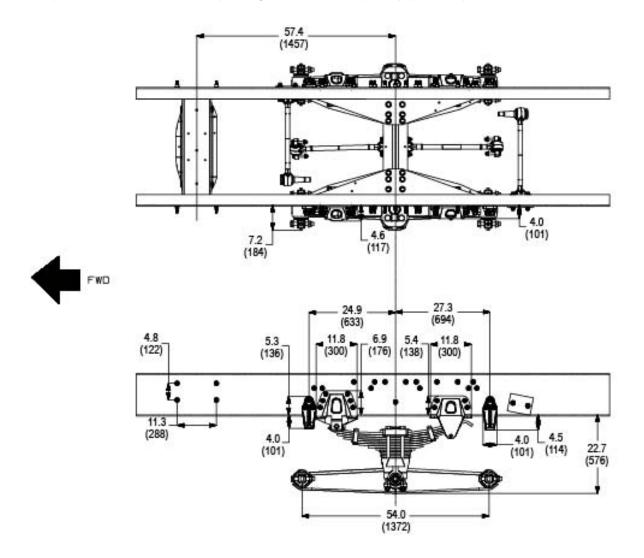
DIAGRAMS PENDING

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Hendrickson RT Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UHD)

HX_14uhd_rt_54

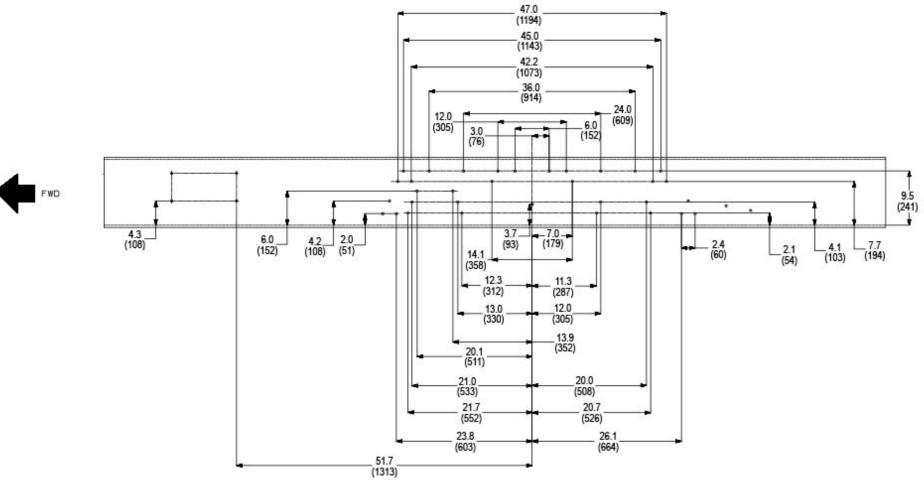
REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Hendrickson RT Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UHD)

HX_14uhd_rt_54_frame_holes

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

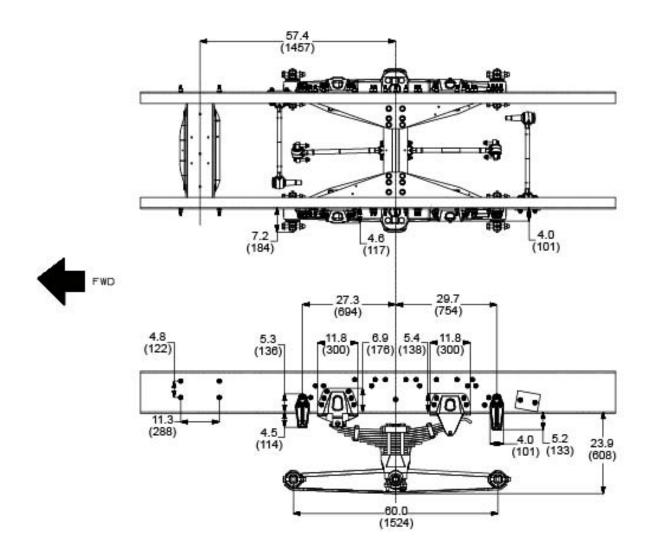
Hendrickson RT Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UHK)


REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

HX_14uhk_rt_54

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

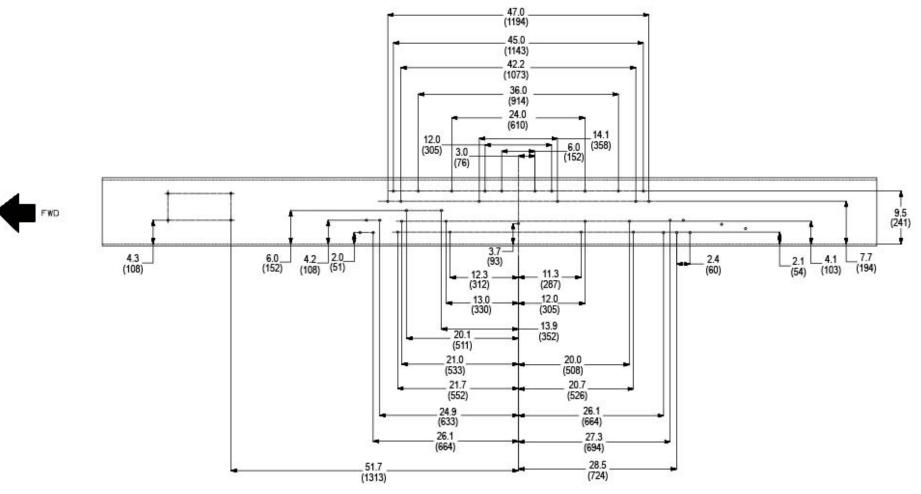
REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Hendrickson RT Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UHK)

HX_14uhk_rt_54_frame_holes

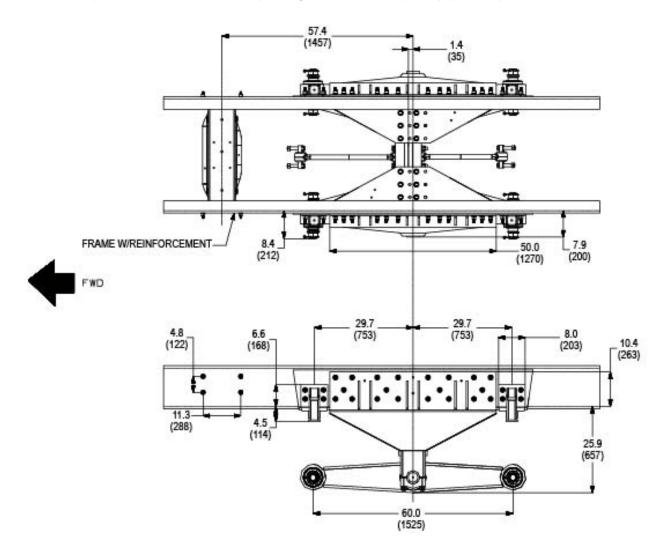
REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson RT Suspension, Tandem; 60" Spacing; 46,000 lb. Capacity (14UHL)



HX_14uhl_rt_60

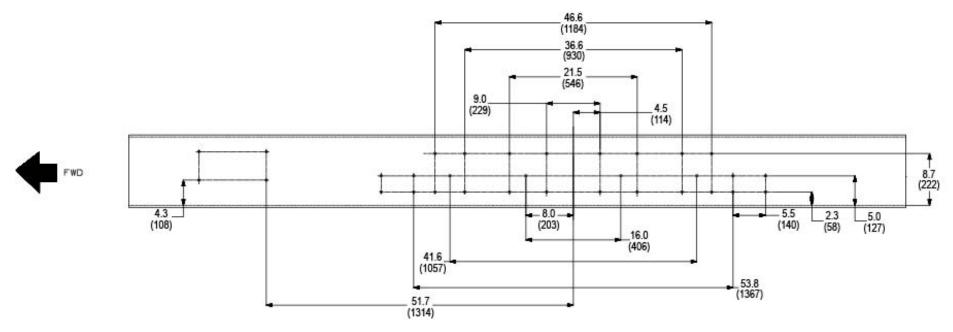
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson RT Suspension, Tandem; 60" Spacing; 46,000 lb. Capacity (14UHL)

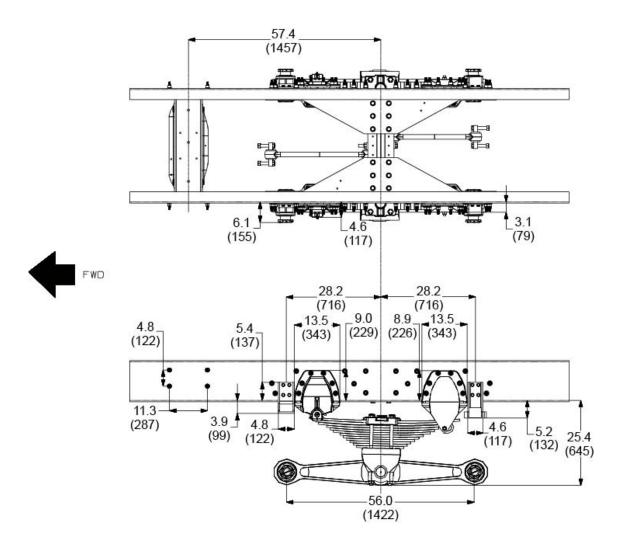
HX_14uhl_rt_60_frame_holes

Hendrickson RT Suspension, Tandem; 60" Spacing; 80,000 lb. Capacity (14UJE)


HX_14uhl_rt_60

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

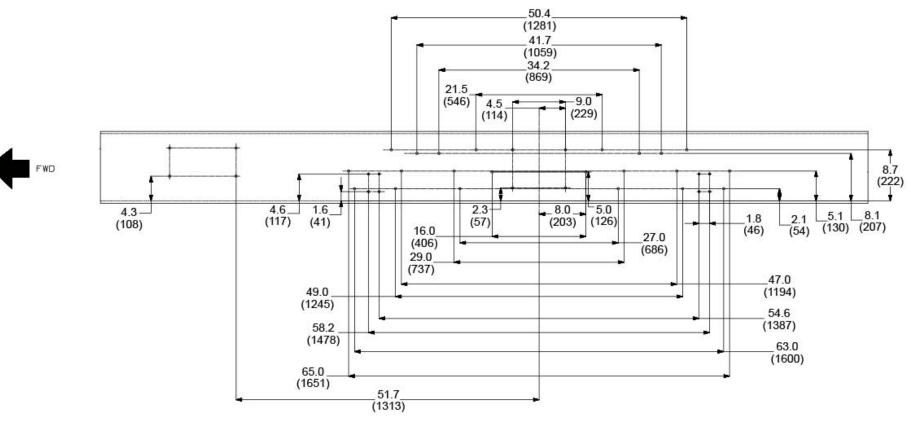
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson RT Suspension, Tandem; 60" Spacing; 80,000 lb. Capacity (14UJE)

HX_14uje_rt_60_frame_holes

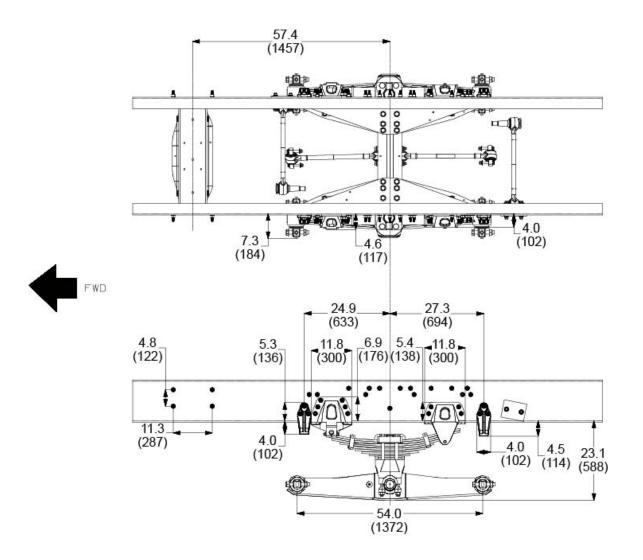
Hendrickson RT Suspension, Tandem; 56" Spacing; 65,000 lb. Capacity (14524)


HX_14524_rt_56

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN JUNE 2016 — 14-13

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

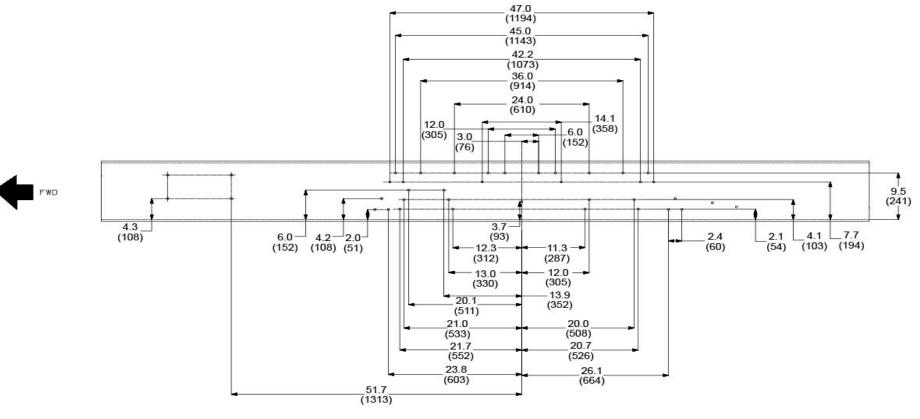
REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Hendrickson RT Suspension, Tandem; 56" Spacing; 65,000 lb. Capacity (14524)

HX_14524_rt_56_frame_holes

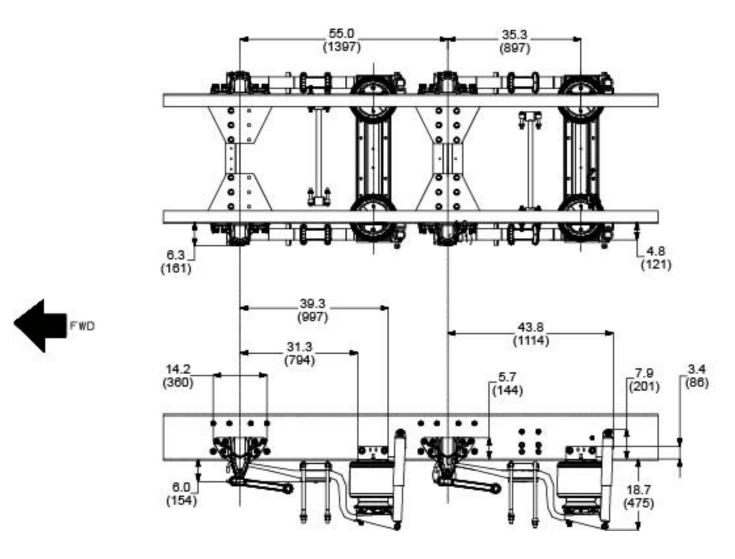
JUNE 2016 — 14-14

Hendrickson RT Suspension, Tandem; 54" Spacing; 52,000 lb. Capacity (14698)



HX_14698_rt_54

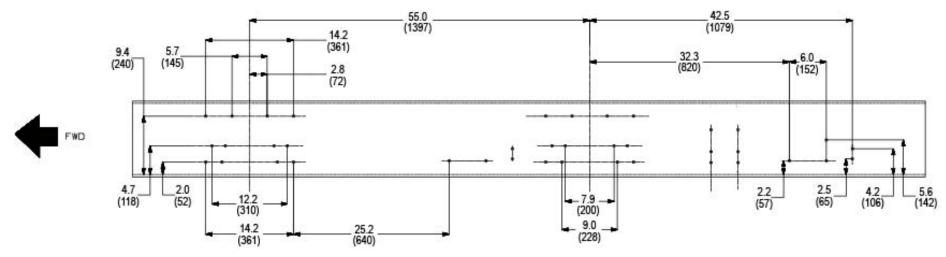
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson RT Suspension, Tandem; 54" Spacing; 52,000 lb. Capacity (14698)

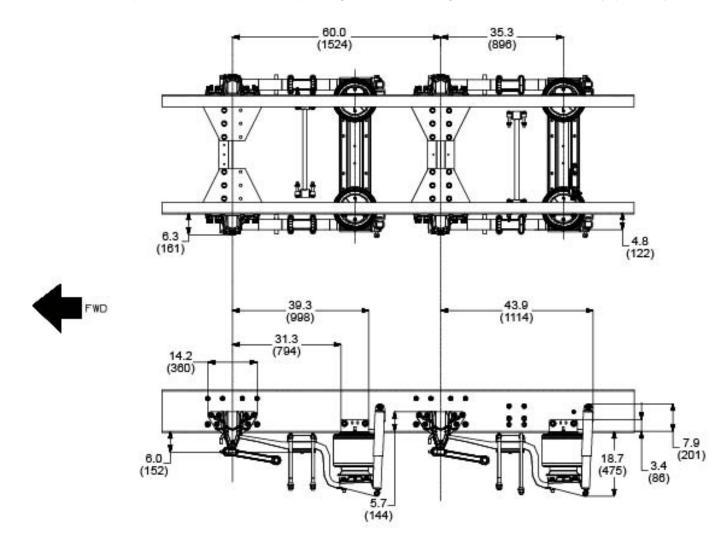
HX_14698_rt_54_frame_holes

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14UKZ)



HX_14ukz_has_55

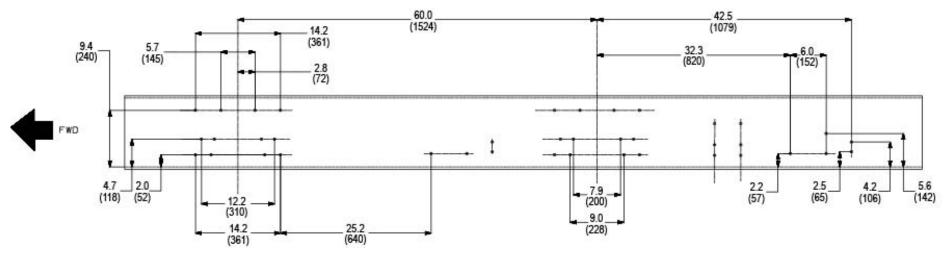
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14UKZ)

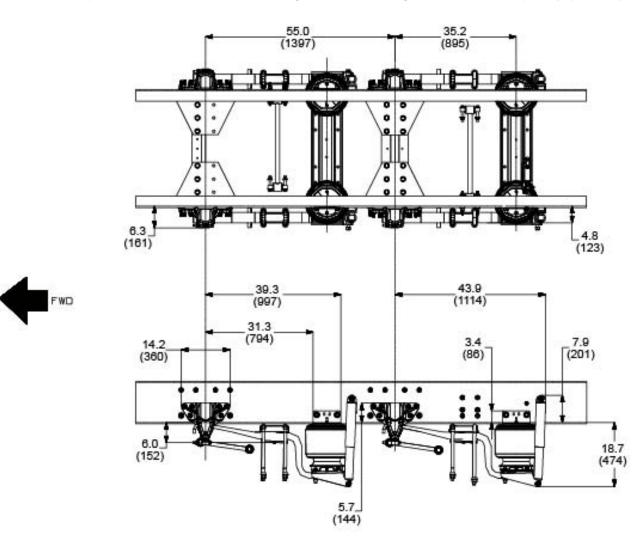
HX_14ukz_has_55_frame_holes

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14ULA)



HX_14ula_has_60

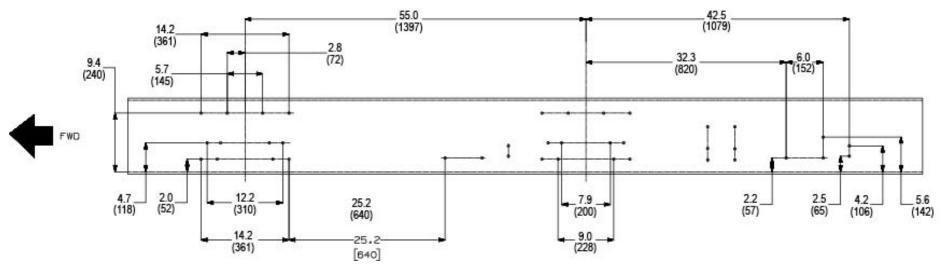
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14ULA)

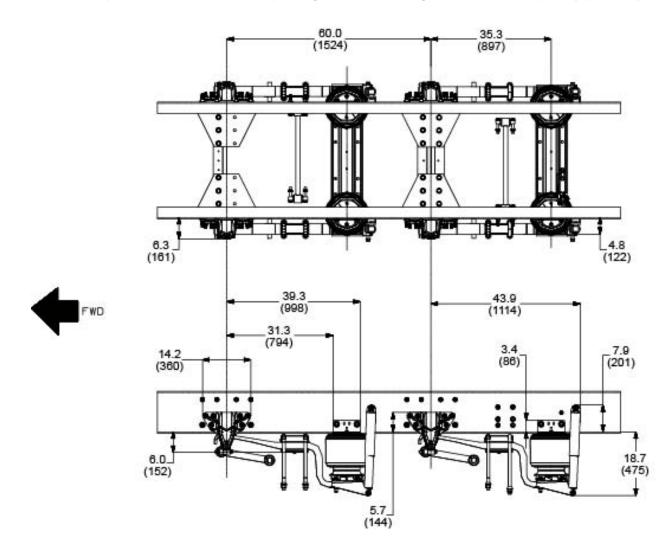
HX_14ula_has_60_frame_holes

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULB)


HX_14ulb_has_55

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN JUNE 2016 - 14-21

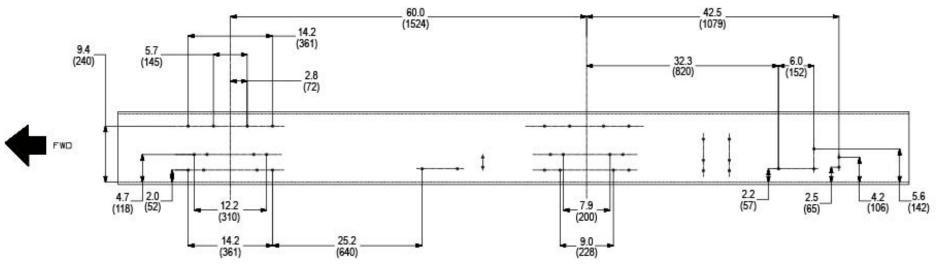
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULB)

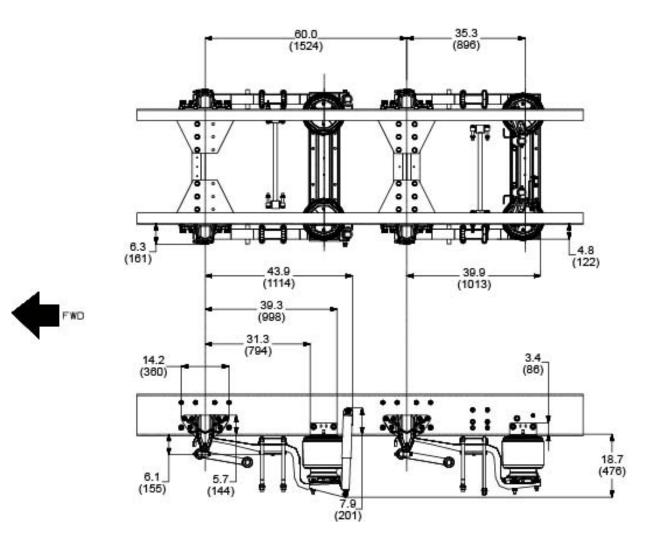
HX_14ulb_has_55_frame_holes

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULC)



REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN JUNE 2016 — 14-23

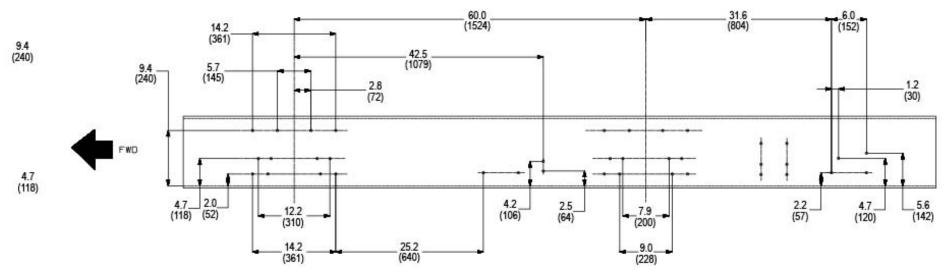
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULC)

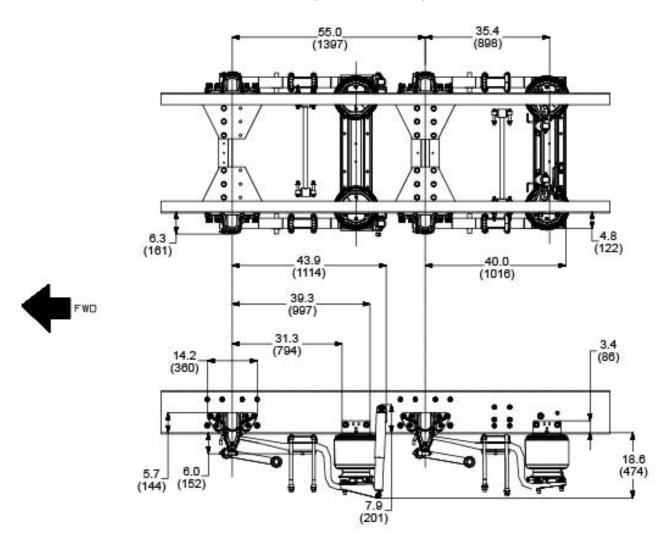
HX_14ulc_has_60_frame holes

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULS)


HX_14uls_has_60

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN JUNE 2016 — 14-25

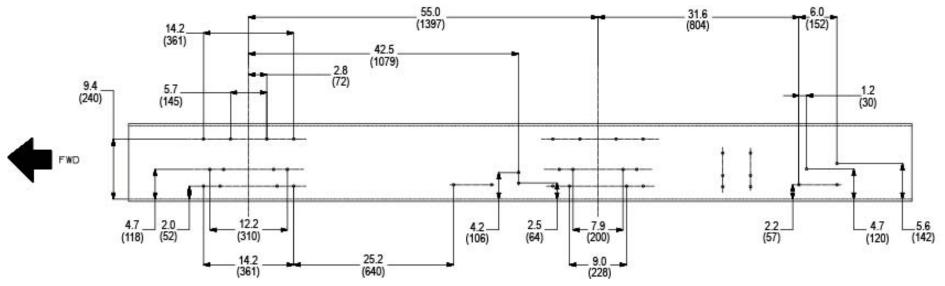
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULS)

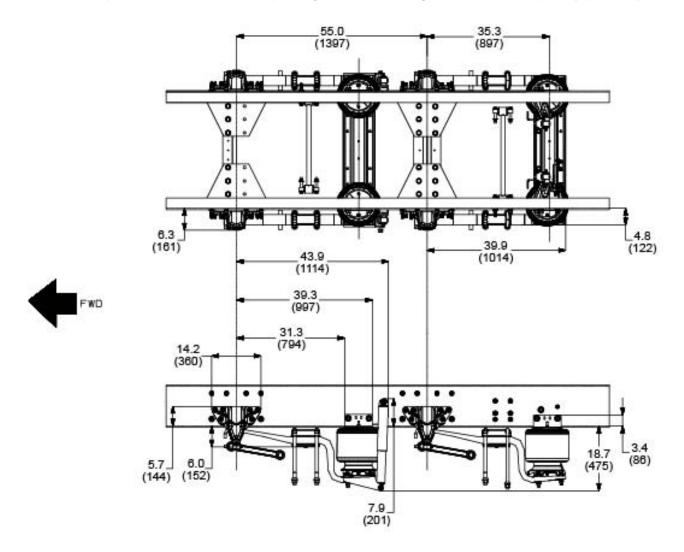
HX_14uls_has_60_frame_holes

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULT)



HX_14ult_has_55

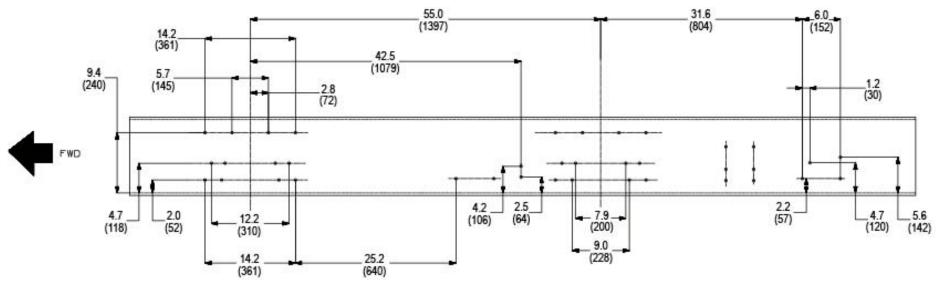
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 46,000 lb. Capacity (14ULT)

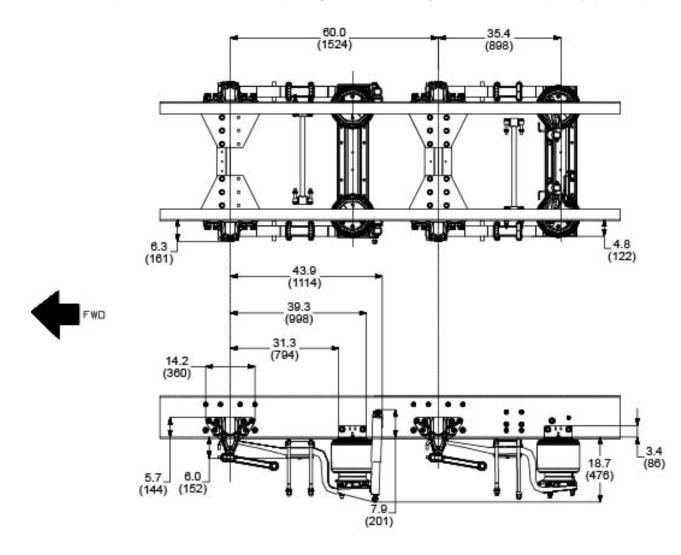
HX_14ult_has_55_frame_holes

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14ULU)



HX_14ulu_has_55

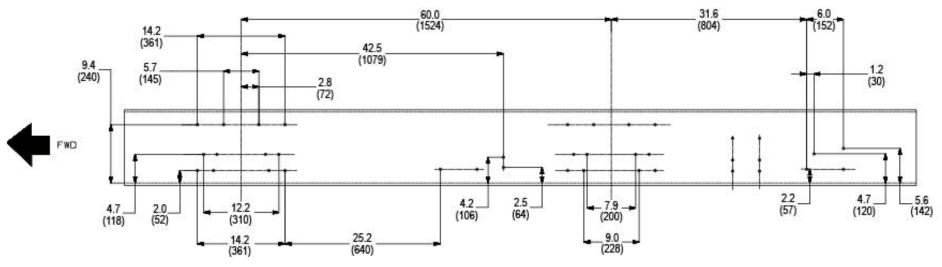
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14ULU)

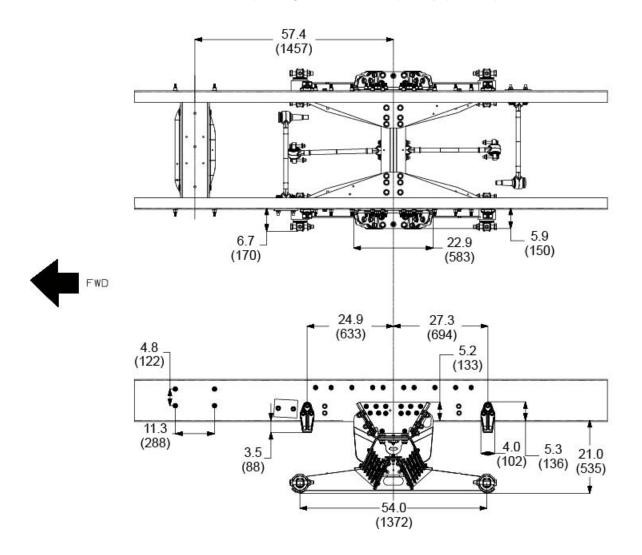
HX_14ulu_has_55_frame_holes

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14ULV)


HX_14ulv_has_60

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN JUNE 2016 - 14-31

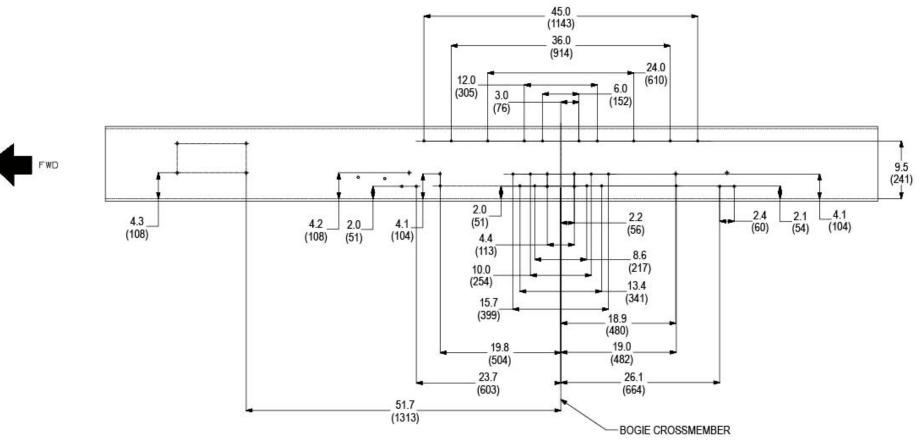
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HAS Air Suspension, Tandem; 60" Spacing; 9.5" Ride Height; 40,000 lb. Capacity (14ULV)

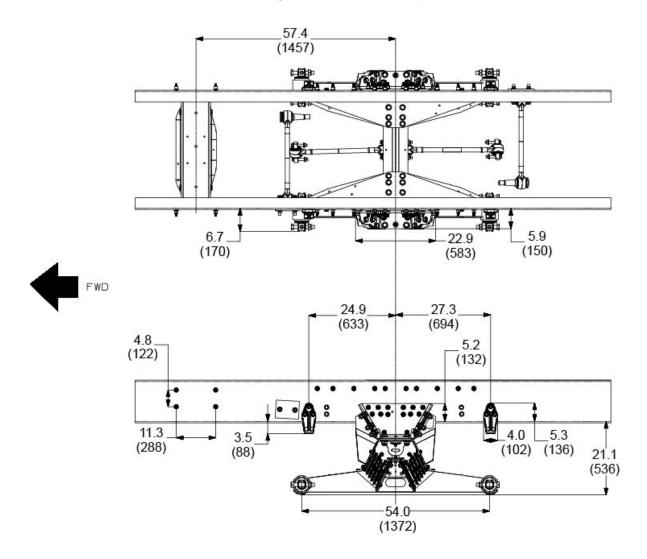
HX_14ulv_has_60_frame_holes

Hendrickson HMX Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14ULX)



HX_14ulx_hmx_54

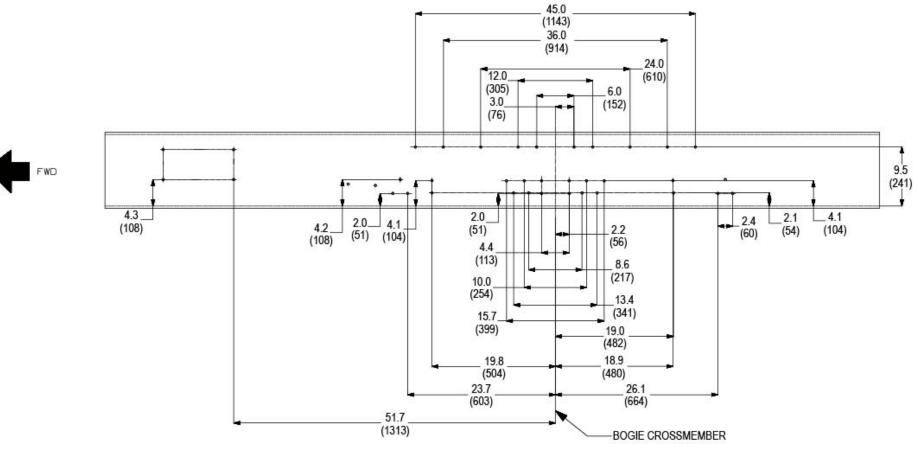
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HMX Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14ULX)

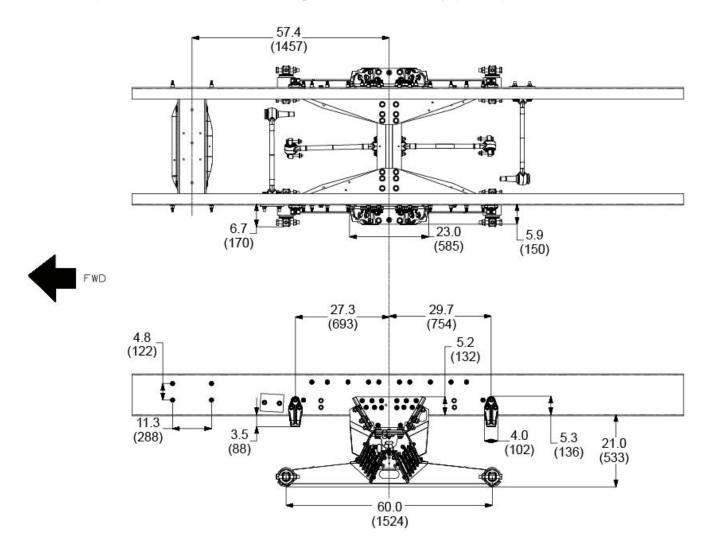
HX_14ulx_hmx_54_frame_holes

Hendrickson HMX Suspension, Tandem; 54" Spacing; 46,000 lb. Capacity (14ULY)



HX_14uly_hmx_54

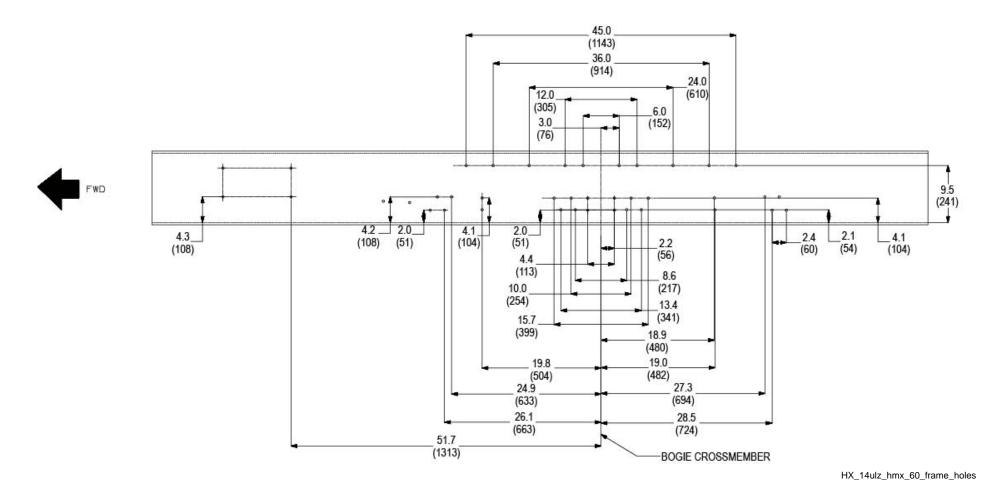
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

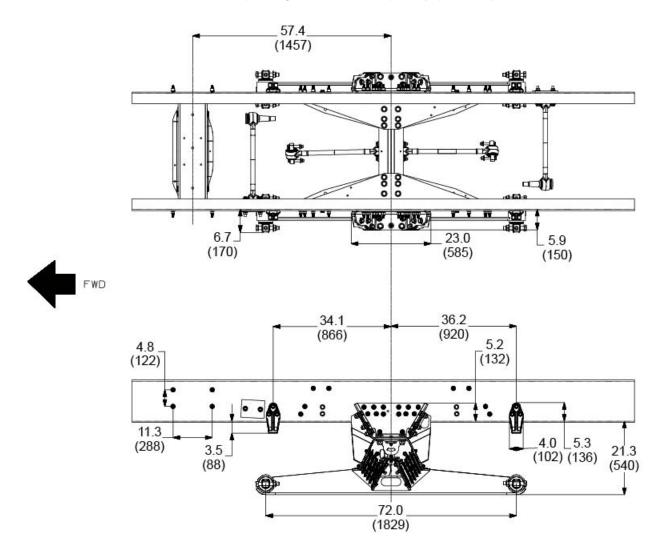
Hendrickson HMX Suspension, Tandem; 54" Spacing; 46,000 lb. Capacity (14ULY)

HX_14uly_hmx_54_frame_holes

Hendrickson HMX Suspension, Tandem; 60" Spacing; 46,000 lb. Capacity (14ULZ)



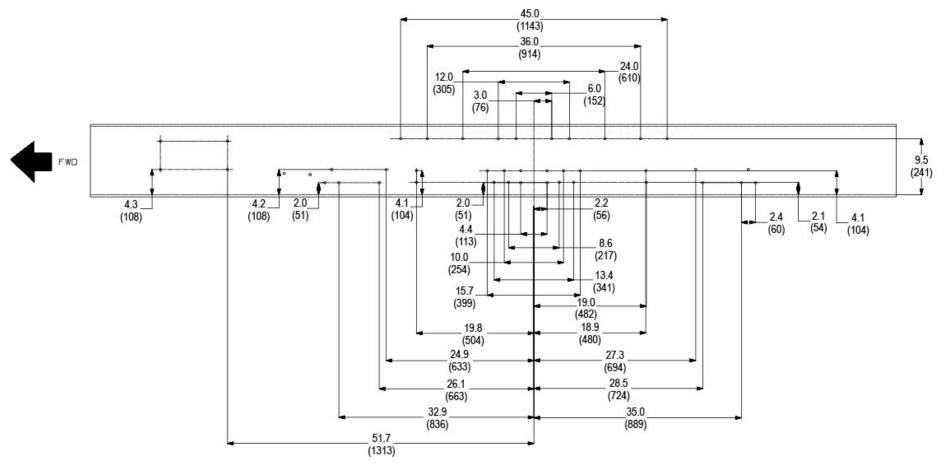
HX_14ulz_hmx_60


REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

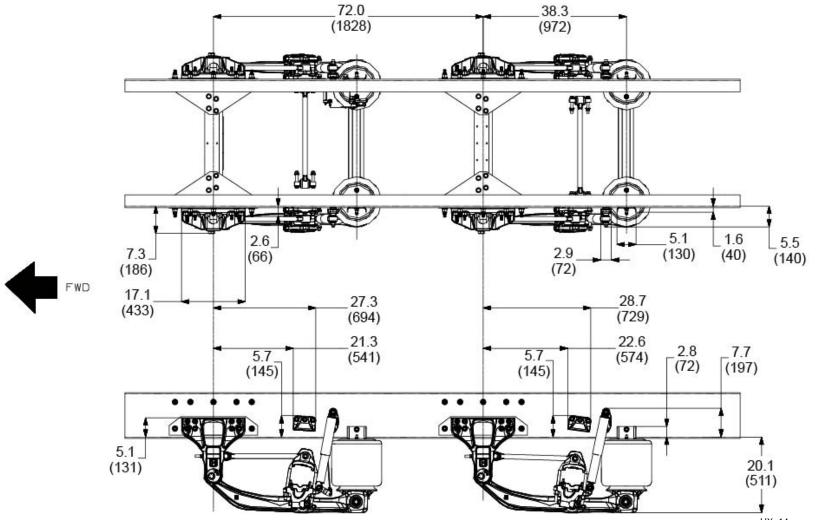
Hendrickson HMX Suspension, Tandem; 60" Spacing; 46,000 lb. Capacity (14ULZ)

Hendrickson HMX Suspension, Tandem; 72" Spacing; 46,000 lb. Capacity (14UMC)



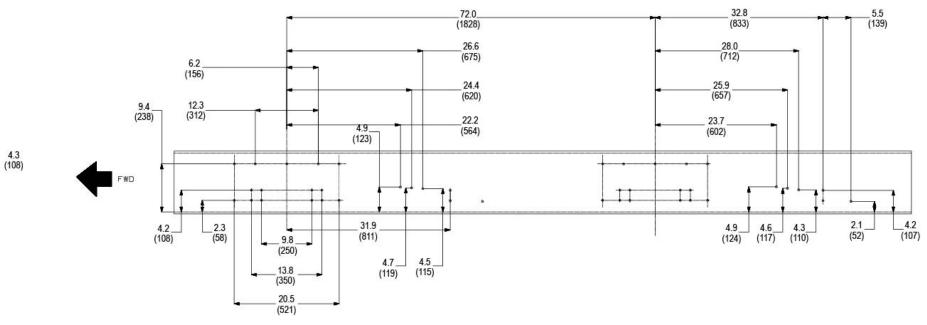
HX_14umc_hmx_72

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

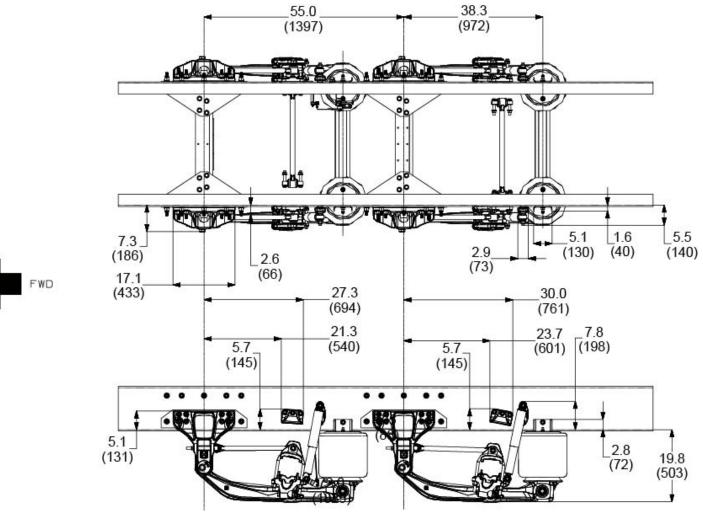

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson HMX Suspension, Tandem; 72" Spacing; 46,000 lb. Capacity (14UMC)

HX_14umc_hmx_72_frame_holes

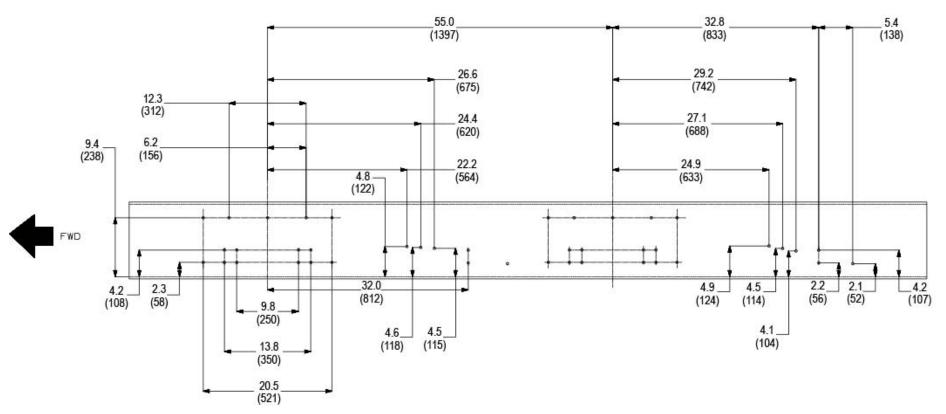

Hendrickson Primaax Air Suspension, Tandem; 72" Spacing; 9.0" Ride Height; 46,000 lb. Capacity (14UNW)

HX_14unw_primaax_72

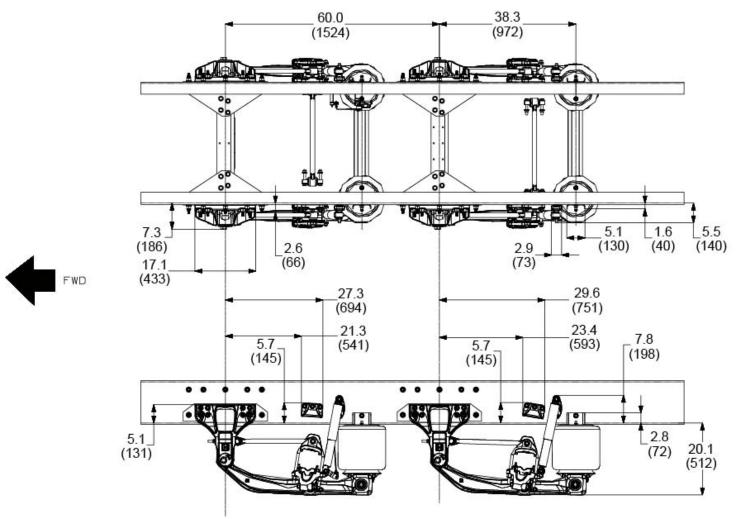

REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson Primaax Air Suspension, Tandem; 72" Spacing; 9.0" Ride Height; 46,000 lb. Capacity (14UNW)

HX_14unw_primaax_72_frame_holes


Hendrickson Primaax Air Suspension, Tandem; 55" Spacing; 9.0" Ride Height; 46,000 lb. Capacity (14UNX)

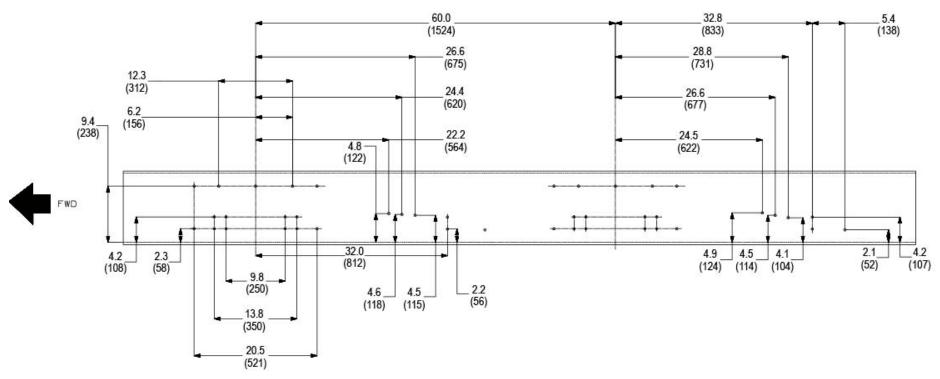
HX_14unx_primaax_55


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Hendrickson Primaax Air Suspension, Tandem; 55" Spacing; 9.0" Ride Height; 46,000 lb. Capacity (14UNX)

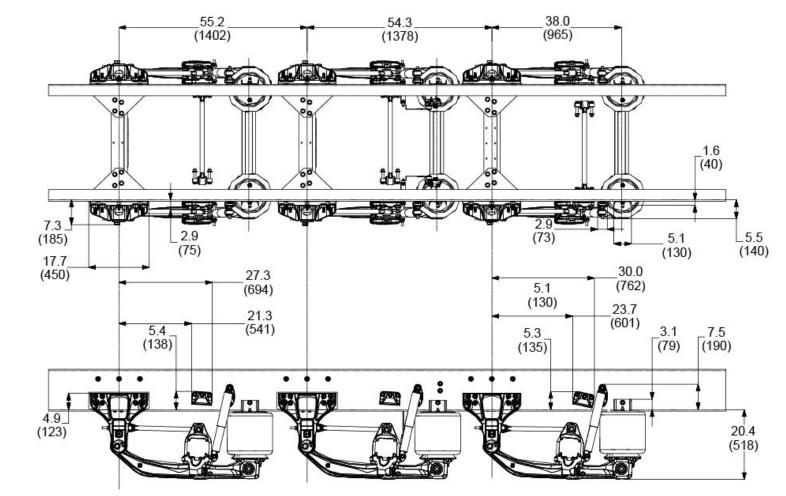
HX_14unx_primaax_55_frame_holes

Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 9.0" Ride Height; 46,000 lb. Capacity (14UNY)



HX_14uny_primaax_60

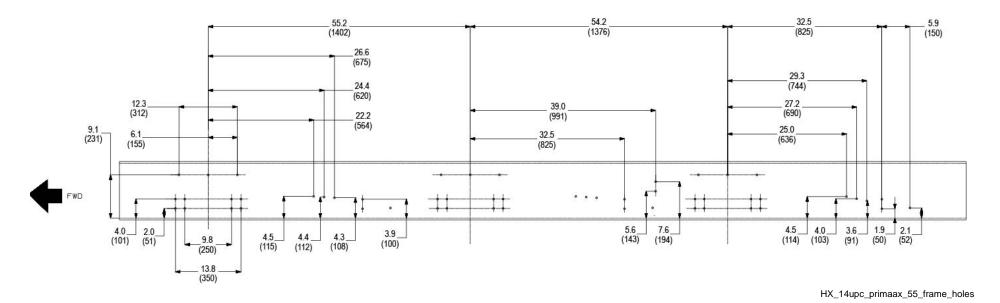
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

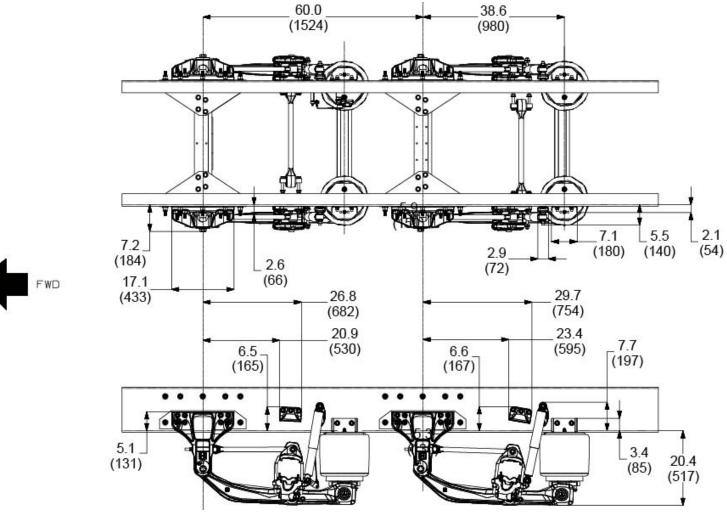
Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 9.0" Ride Height; 46,000 lb. Capacity (14UNY)

HX_14uny_primaax_60_frame_holes

Hendrickson Primaax Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 69,000 lb. Capacity (14UPC)


HX[™] Series Series Body Builder

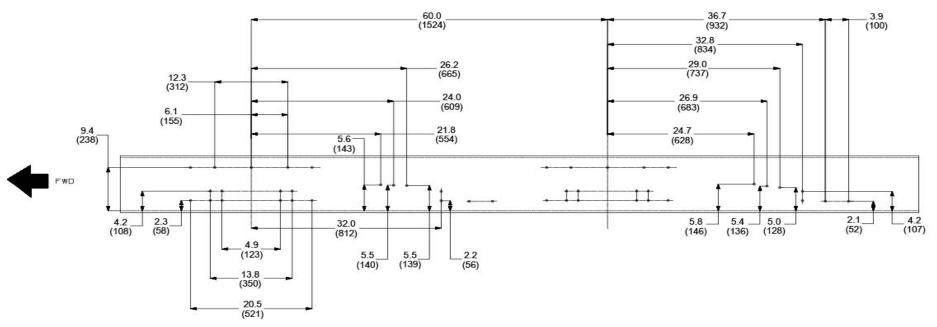
FWD


REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

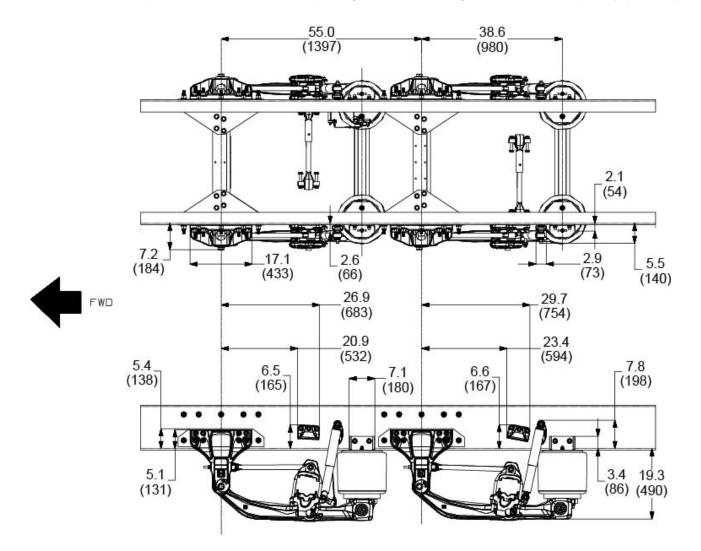
Hendrickson Primaax Air Suspension, Tandem; 55" Spacing; 9.5" Ride Height; 69,000 lb. Capacity (14UPC)

Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 10.0" Ride Height; 52,000 lb. Capacity (14UPU)

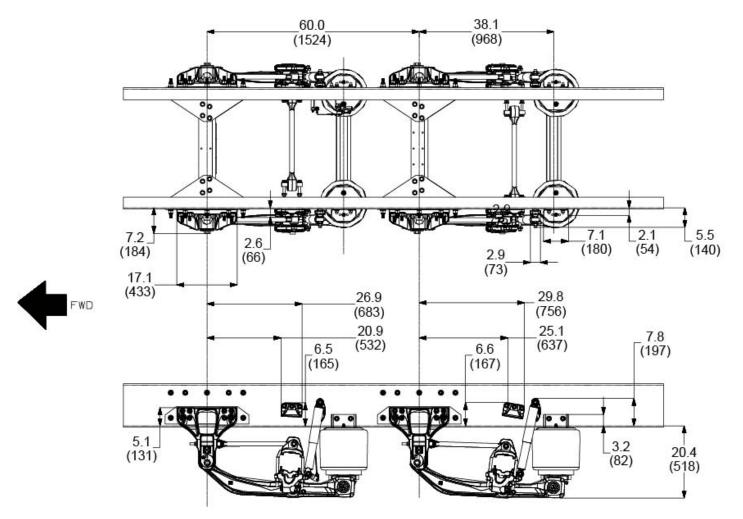


HX_14upu_primaax_60

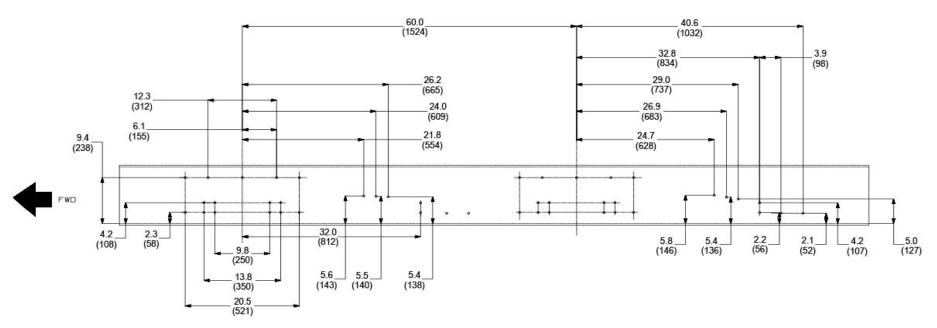
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

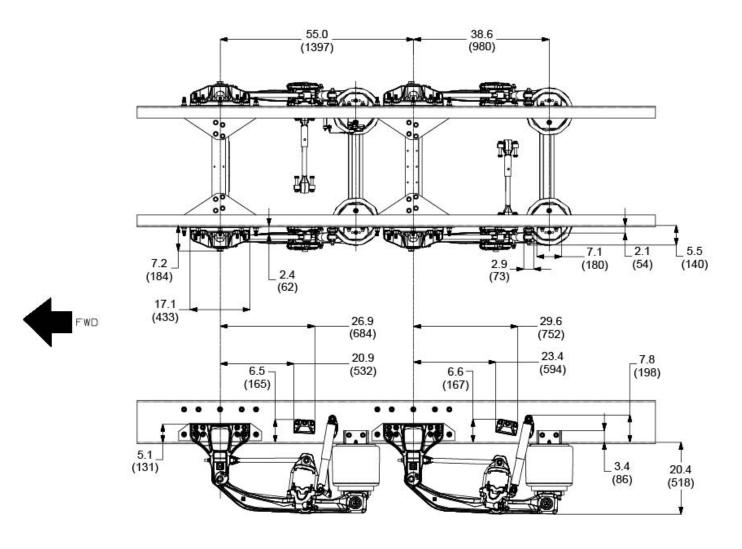
Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 10.0" Ride Height; 52,000 lb. Capacity (14UPU)


HX_14upu_primaax_60_frame_holes

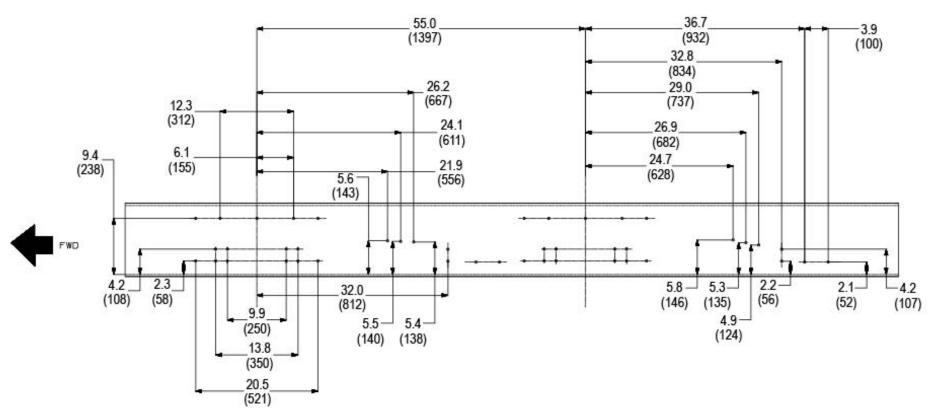
Hendrickson Primaax Air Suspension, Tandem; 55" Spacing; 9.0" Ride Height; 52,000 lb. Capacity (14UPV)


HX_14upv_primaax_55

Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 9.0" Ride Height; 52,000 lb. Capacity (14UPW)


HX_14upw_primaax_60

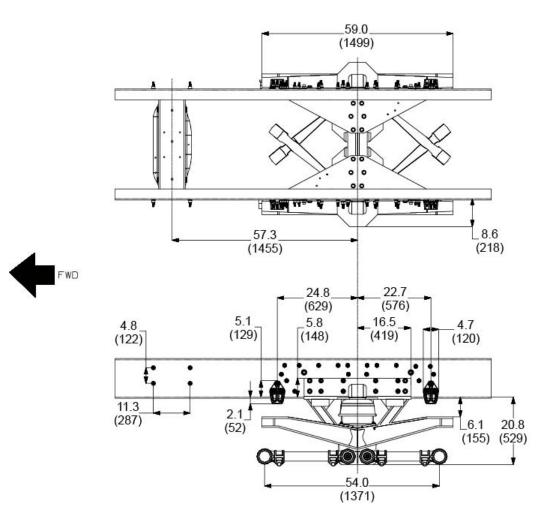
Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 9.0" Ride Height; 52,000 lb. Capacity (14UPW)


HX_14upw_primaax_60_frame_holes

Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 9.0" Ride Height; 52,000 lb. Capacity (14UPX)

HX_14upx_primaax_55

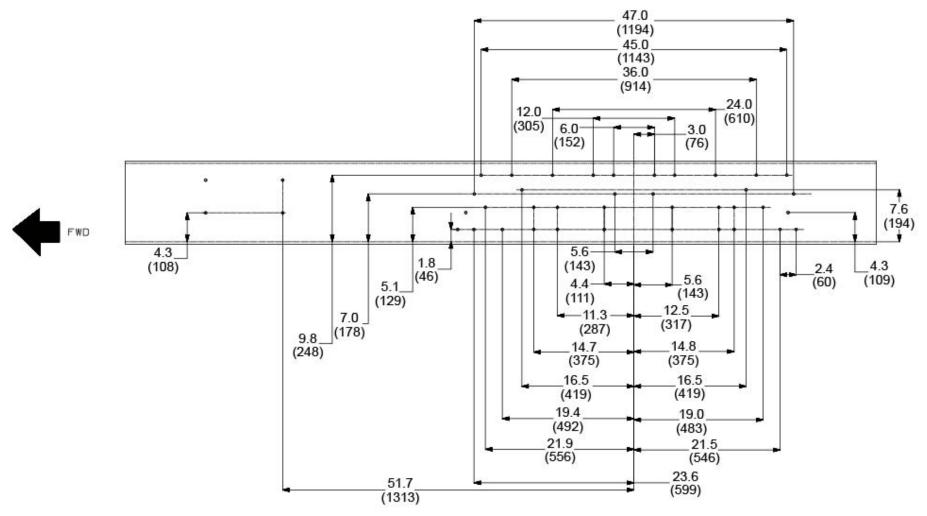
Hendrickson Primaax Air Suspension, Tandem; 60" Spacing; 9.0" Ride Height; 52,000 lb. Capacity (14UPX)



HX_14upx_primaax_55_frame_holes

JUNE 2016 — 14-55

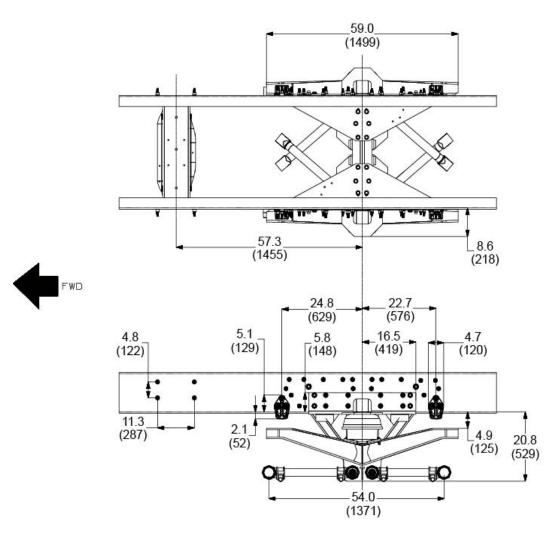
REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Chalmers Suspension, Tandem; 54" Spacing; 46,000 lb. Capacity (14UZB)

HX_14uzb_chalmers_54

JUNE 2016 — 14-56

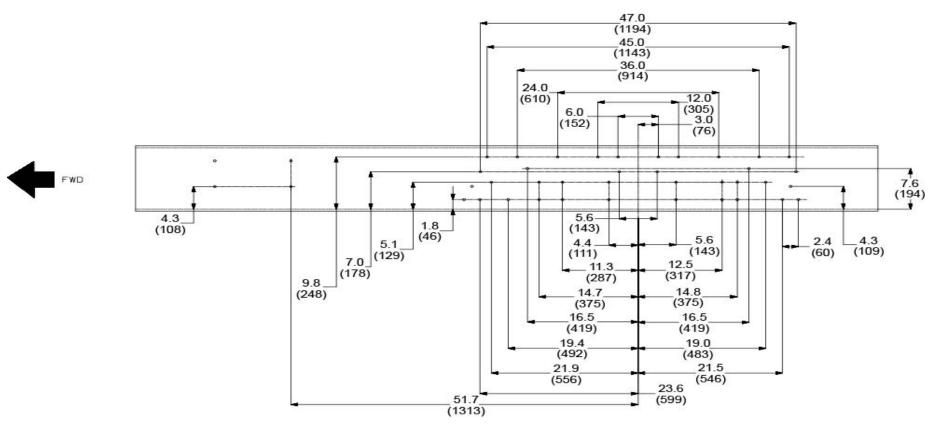
Chalmers Suspension, Tandem; 54" Spacing; 46,000 lb. Capacity (14UZB)



HX_14uzb_chalmers_54_frame_holes

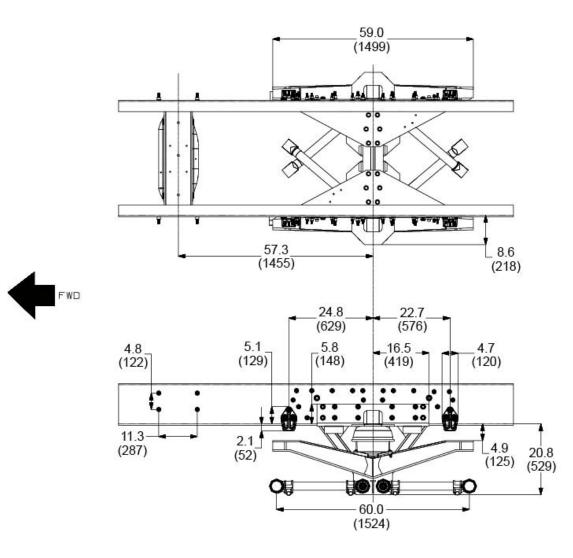
REAR AXLES AND REAR SUSPENSIONS • 14 REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Chalmers Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UZS)

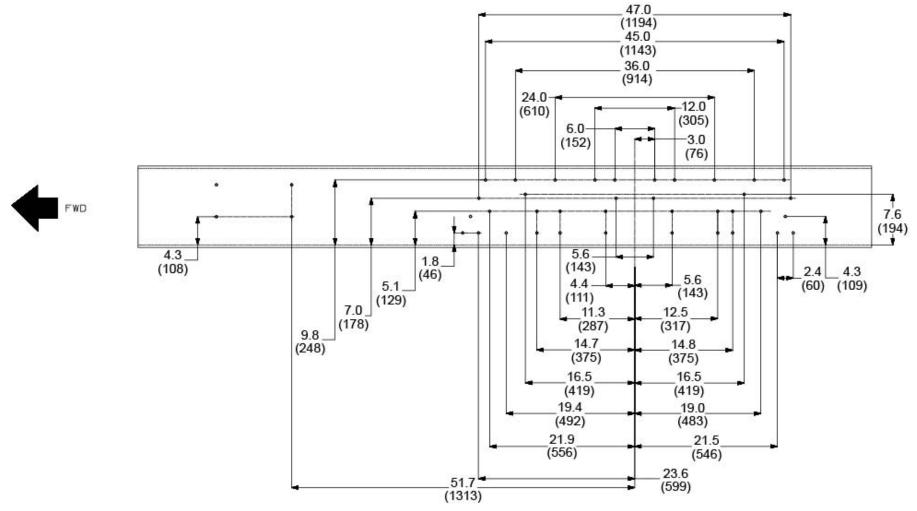
HX_14uzs_chalmers_54

JUNE 2016 — 14-58


Chalmers Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UZS)

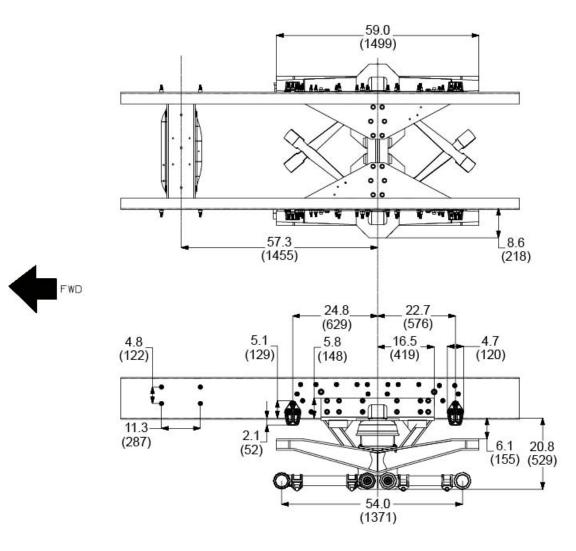
HX_14uzs_chalmers_54_frame_holes

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

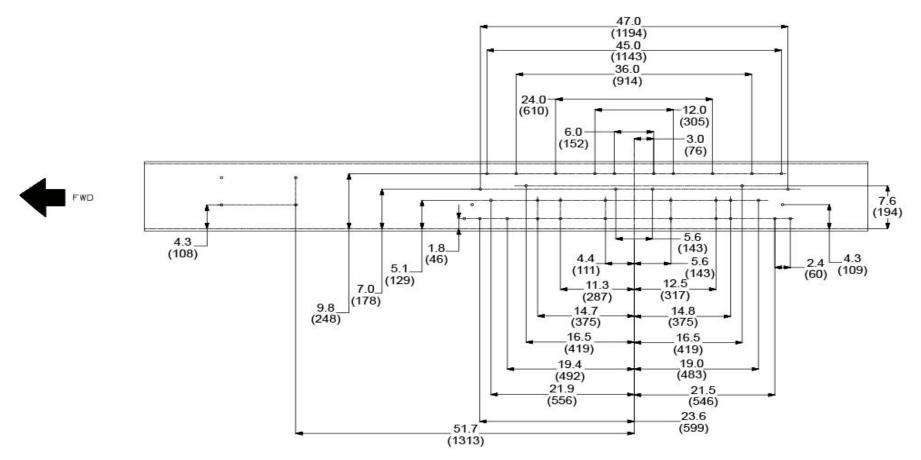

Chalmers Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UZT)

HX_14uzt_chalmers_60

JUNE 2016 — 14-60

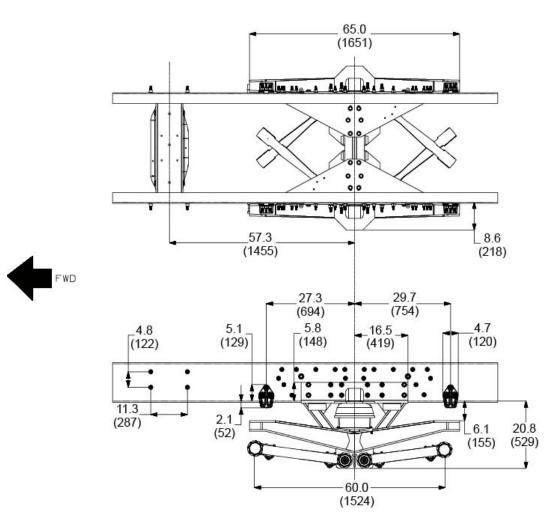

Chalmers Suspension, Tandem; 54" Spacing; 40,000 lb. Capacity (14UZT)

HX_14uzt_chalmers_60_frame_holes

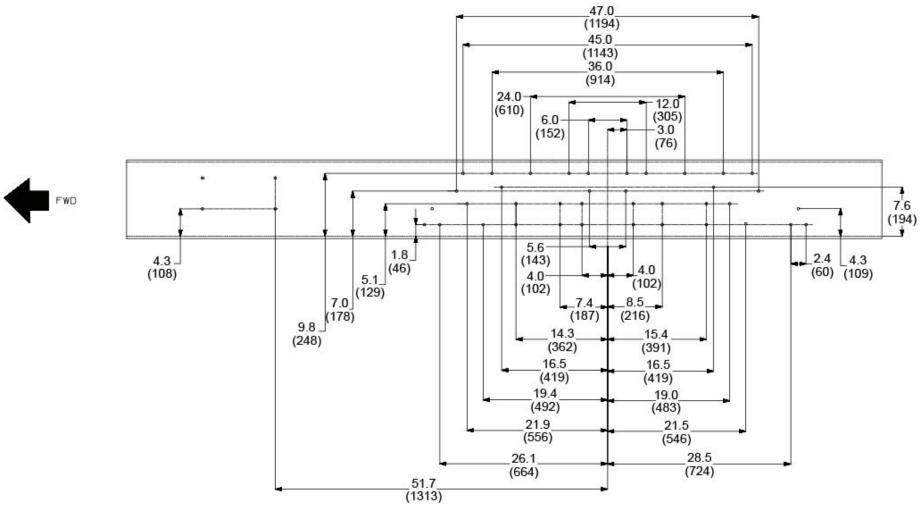

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Chalmers Suspension, Tandem; 54" Spacing; 46,000 lb. Capacity (14UZU)

HX_14uzu_chalmers_54


Chalmers Suspension, Tandem; 54" Spacing; 46,000 lb. Capacity (14UZU)

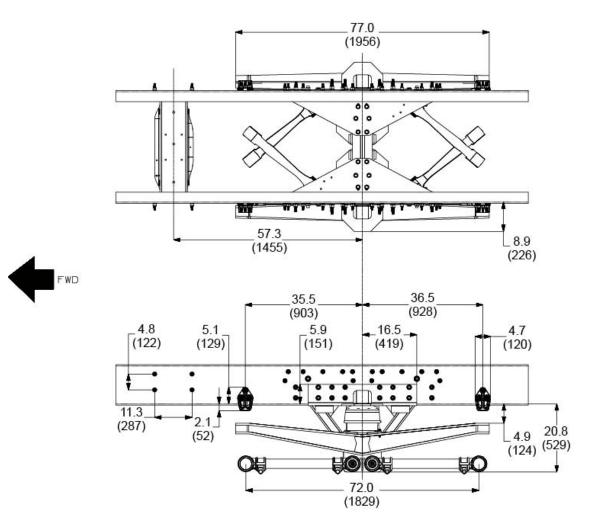
HX_14uzu_chalmers_54_frame_holes


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

Chalmers Suspension, Tandem; 60" Spacing; 46,000 lb. Capacity (14UZV)

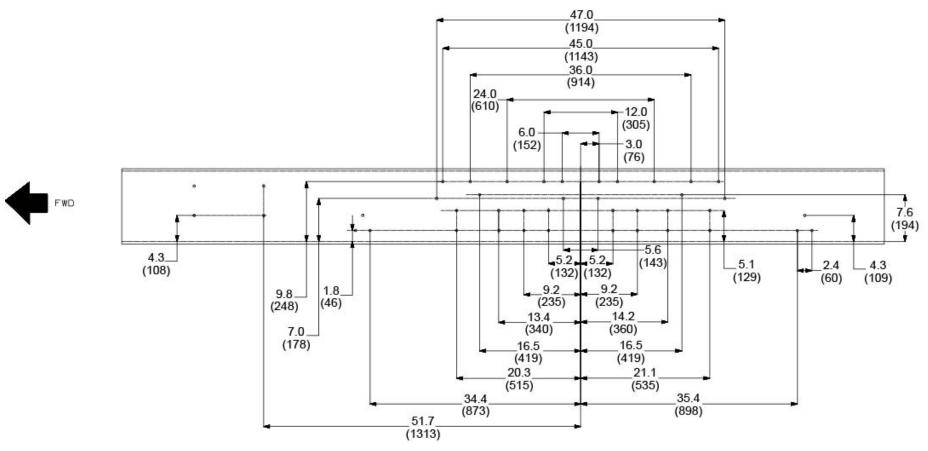
HX_14uzv_chalmers_60

Chalmers Suspension, Tandem; 60" Spacing; 46,000 lb. Capacity (14UZV)



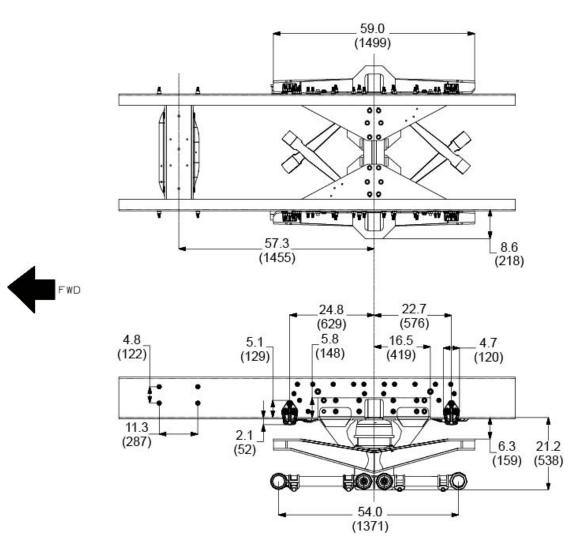
HX_14uzv_chalmers_60_frame_holes

• 14 JUNE 2016 — 14-66 F PATTERN


REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN

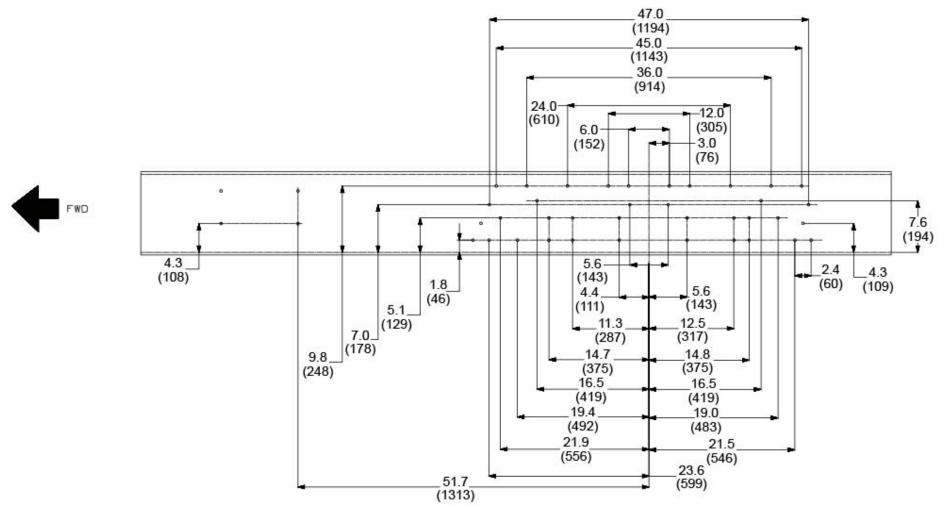
Chalmers Suspension, Tandem; 72" Spacing; 46,000 lb. Capacity (14UZW)

HX_14uzw_chalmers_72


Chalmers Suspension, Tandem; 72" Spacing; 46,000 lb. Capacity (14UZW)

HX_14uzw_chalmers_72_frame_holes

REAR SUSPENSION BRACKET LOCATION & HOLE PATTERN


Chalmers Suspension, Tandem; 54" Spacing; 52,000 lb. Capacity (14UZX)

HX_14uzx_chalmers_54.

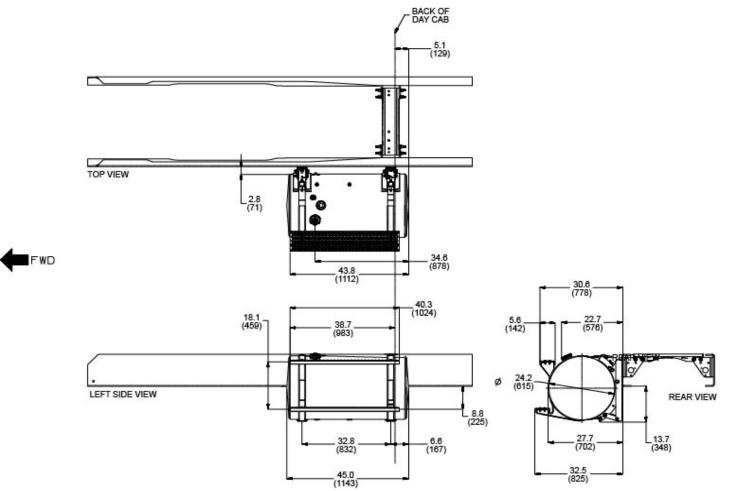
JUNE 2016 — 14-68

Chalmers Suspension, Tandem; 54" Spacing; 52,000 lb. Capacity (14UZX)

HX_14uzx_chalmers_54_frame_holes

HX[™] SERIES SERIES BODY BUILDER

JUNE 2016 — 14-70

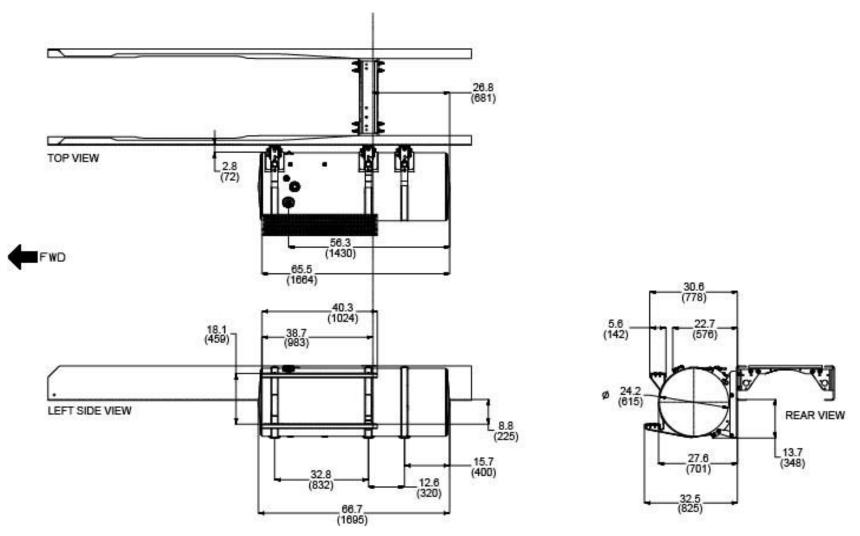


A NAVISTAR COMPANY

FUEL TANKS

SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

80 Gallon; 24", Mounted Left Side Under Cab (15SGL, 15SSL)

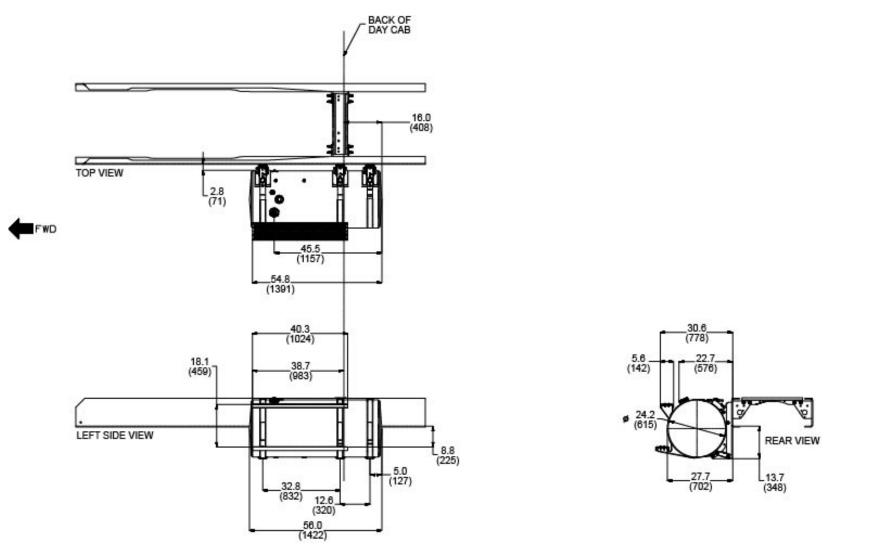

HX_SFA_114BBC_15SGL_15SSL

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

120 Gallon; 24", Mounted Left Side Under Cab (15SSG, 15SMZ)



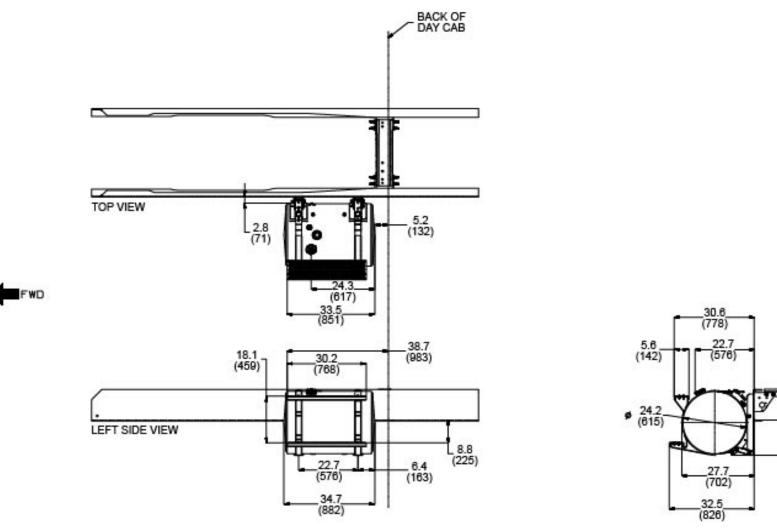
HX_SFA_114BBC_15SSG_15SMZ

JUNE 2016 — 15-2

SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

100 Gallon; 24", Mounted Left Side Under Cab (15SSK, 15SHC)

HX_SFA_114BBC_15SSK_15SHC

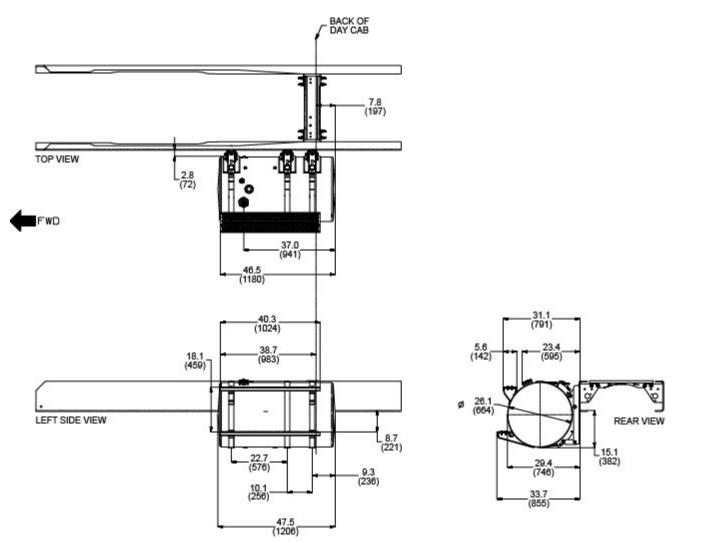

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

60 Gallon; 24", Mounted Left Side Under Cab (15SSM, 15SSN)

HX_SFA_114BBC_15SSM_15SSN


13.7 (348)

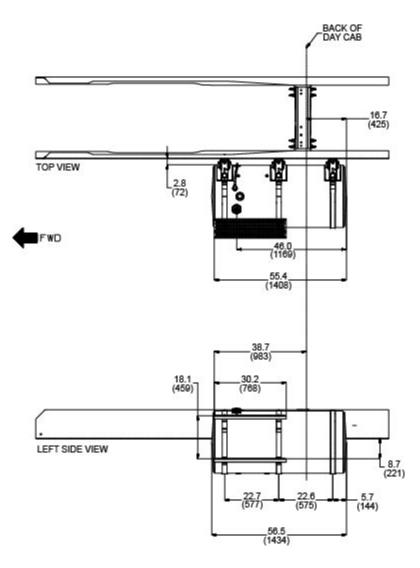
REAR VIEW

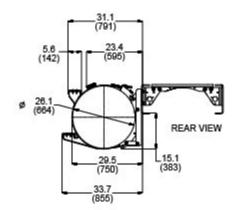
JUNE 2016 — 15-4

SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

100 Gallon; 26", Mounted Left Side Under Cab (15SWH, 15SJR)

HX_SFA_114BBC_15SWH_15SJR

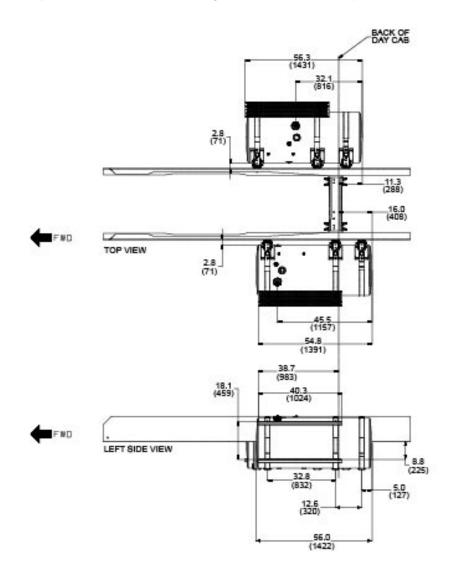

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)



FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

120 Gallon; 26", Mounted Left Side Under Cab (15SWJ, 15SWK)



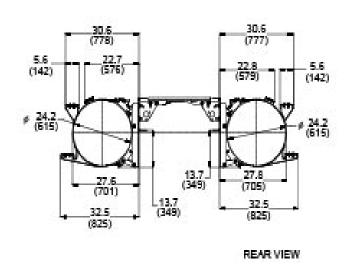
HX_SFA_114BBC_15SWJ_15SWK

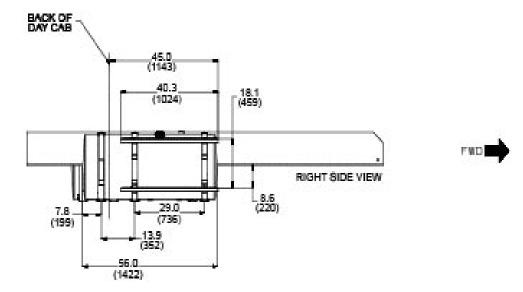
DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 100 Gallon (200 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWS, 15DWT)

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

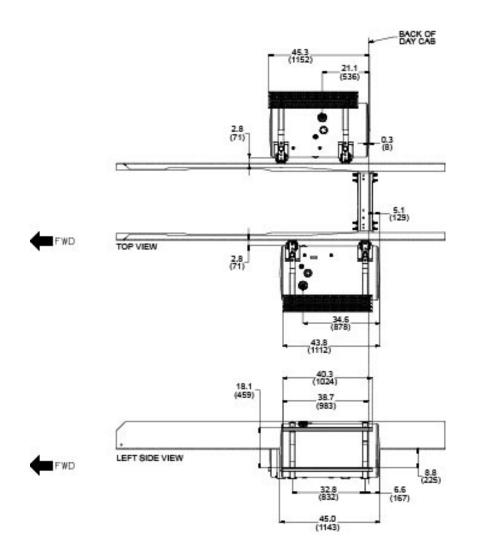



HX_SFA_114BBC_15DWS_15DWT_top_left

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 100 Gallon (200 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWS, 15DWT)

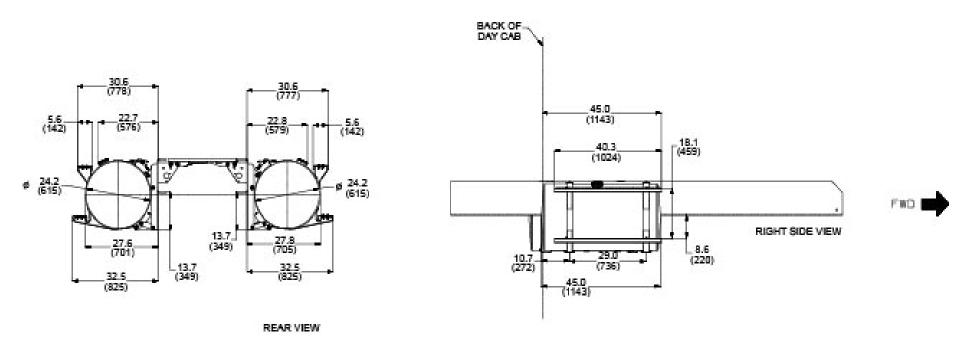


Rear and Right Side View

HX_SFA_114BBC_15DWS_15DWT_rear_right.jpg

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

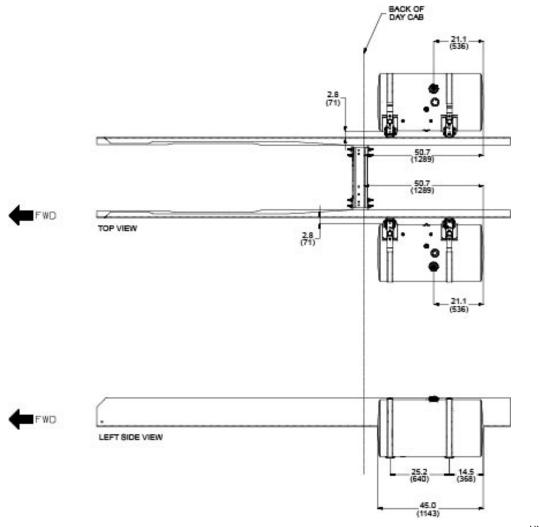
Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWU, 15DWV)


Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWU, 15DWV)



Rear and Right Side View

HX_SFA_114BBC_15DWU_15DWV_rear_right.jpg

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXD, 15DXC)

Top and Left Side View

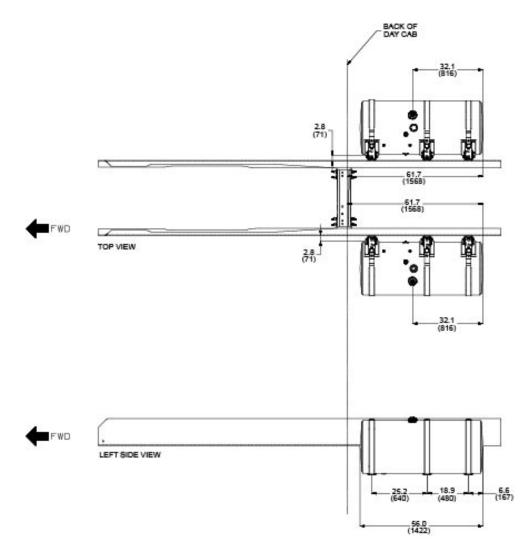
FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

JUNE 2016 — 15-12

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXD, 15DXC)



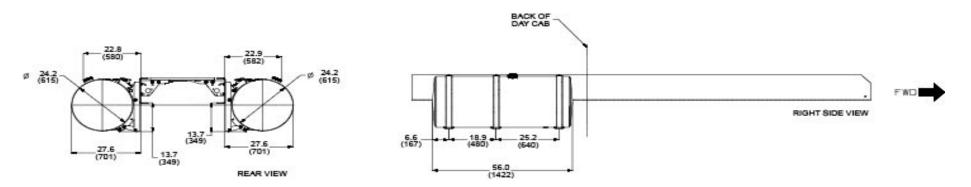
Rear and Right Side View

HX_SFA_114BBC_15DXD_15DXC_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 100 Gallon (200 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXG, 15DXE)

Top and Left Side View


FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

JUNE 2016 — 15-14

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 100 Gallon (200 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXG, 15DXE)

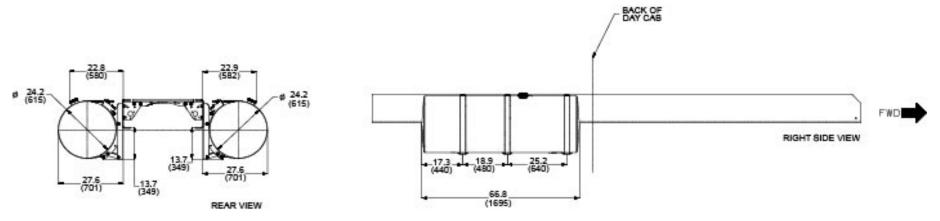
Rear and Right Side View

HX_SFA_114BBC_15DXG_15DXE_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXJ, 15DXH)

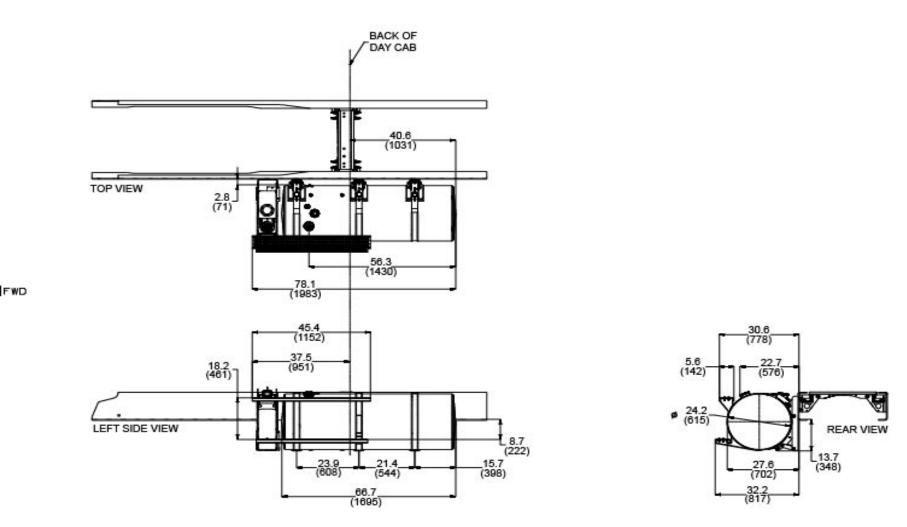
Top and Left Side View



FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

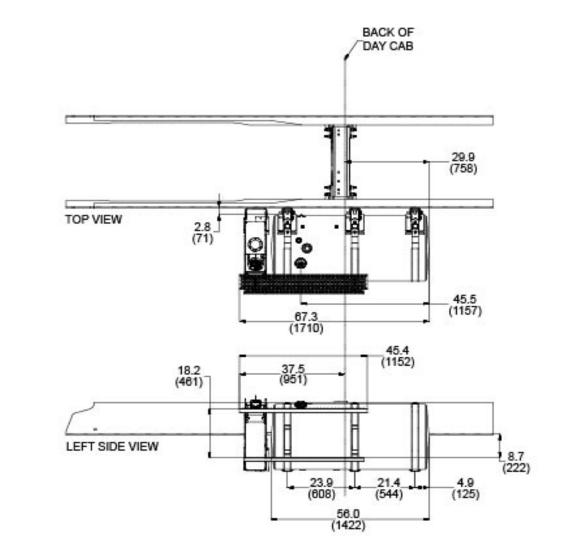
DUAL FUEL TANK & STEP LOCATIONS - SFA (114 BBC)

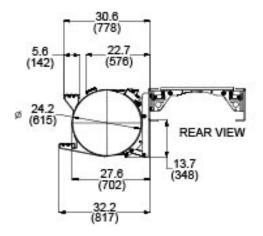

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXJ, 15DXH)

Rear and Right Side View

HX_SFA_114BBC_15DXJ_15DXH_rear_right

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC) 120 Gallon; 24", Mounted Left Side Under Cab (15SSG, 15SMZ)

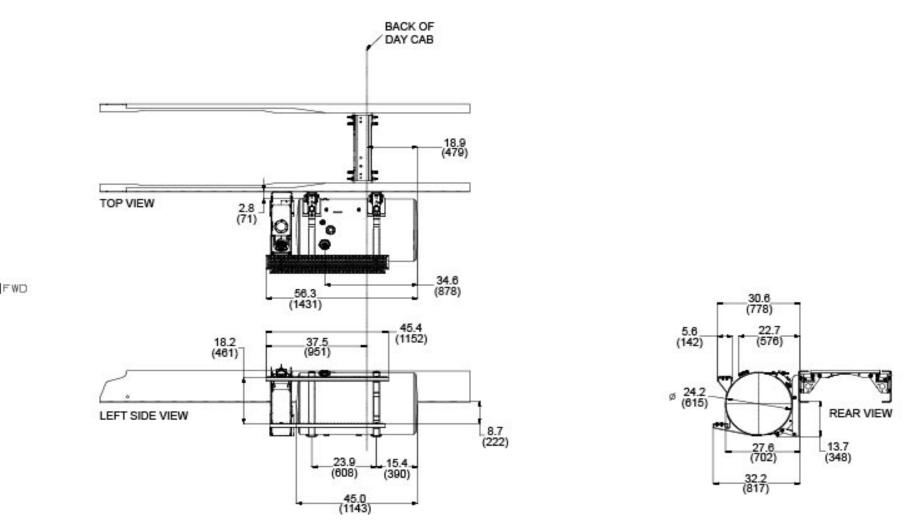

HX_SBA_115BBC_15SSG_15SMZ


FWD

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

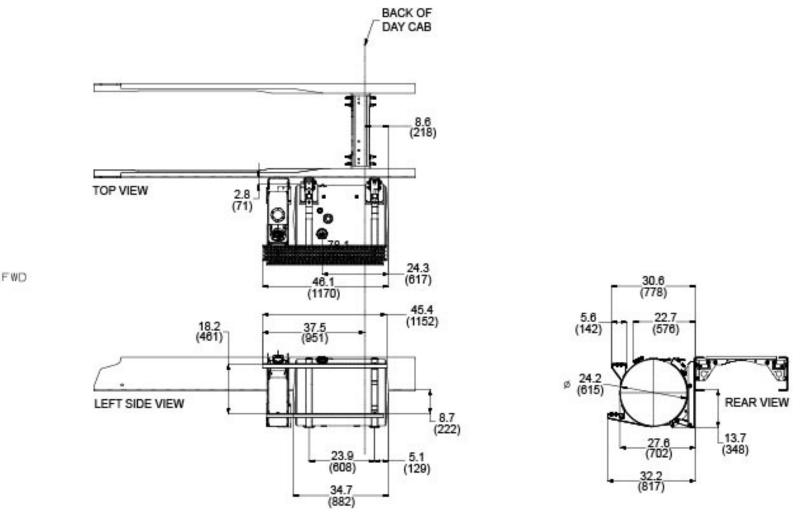
100 Gallon; 24", Mounted Left Side Under Cab (15SSK, 15SHC)



HX_SBA_115BBC_15SSK_15SHC

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

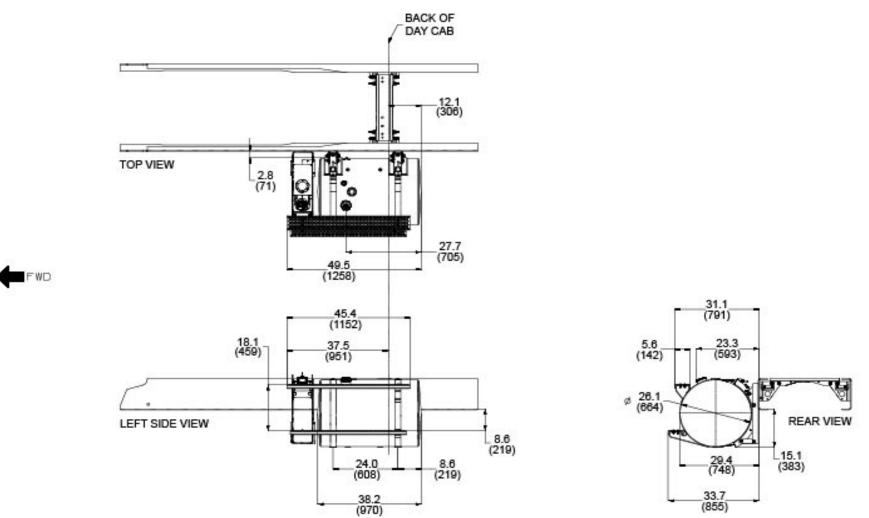
80 Gallon; 24", Mounted Left Side Under Cab (15SSL, 15SGL)


HX_SBA_115BBC_15SSL_15SGL

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

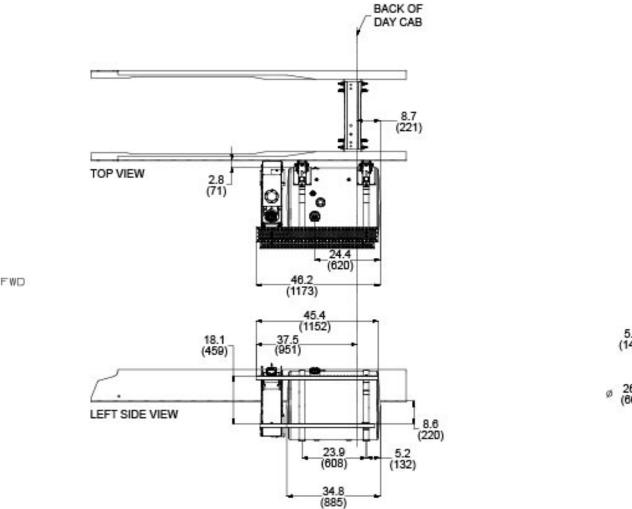
SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

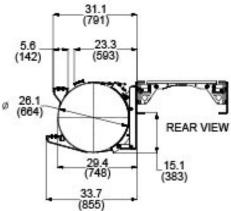

60 Gallon; 24", Mounted Left Side Under Cab (15SSM, 15SSN)

HX_SBA_115BBC_15SSM_15SSN

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

80 Gallon; 26", Mounted Left Side Under Cab (15SWD, 15SJZ)

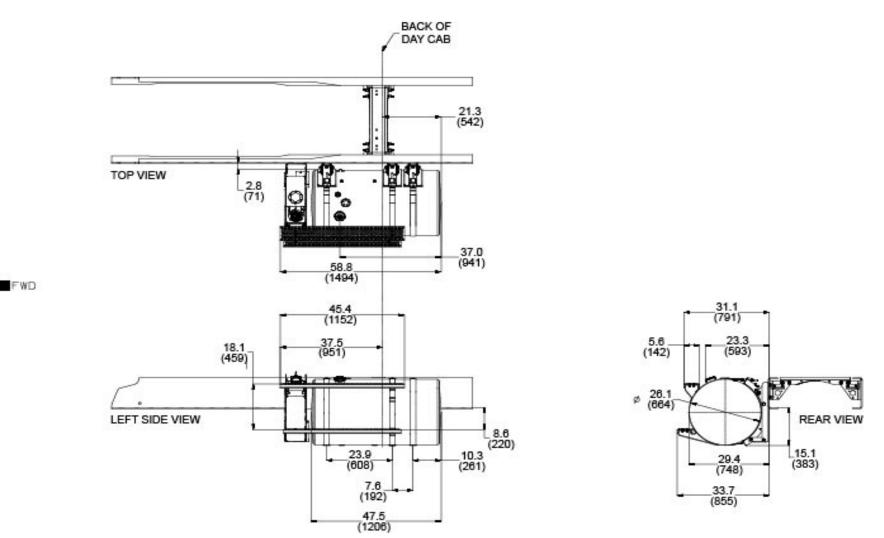

HX_SBA_115BBC_15SWD_15SJZ


FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

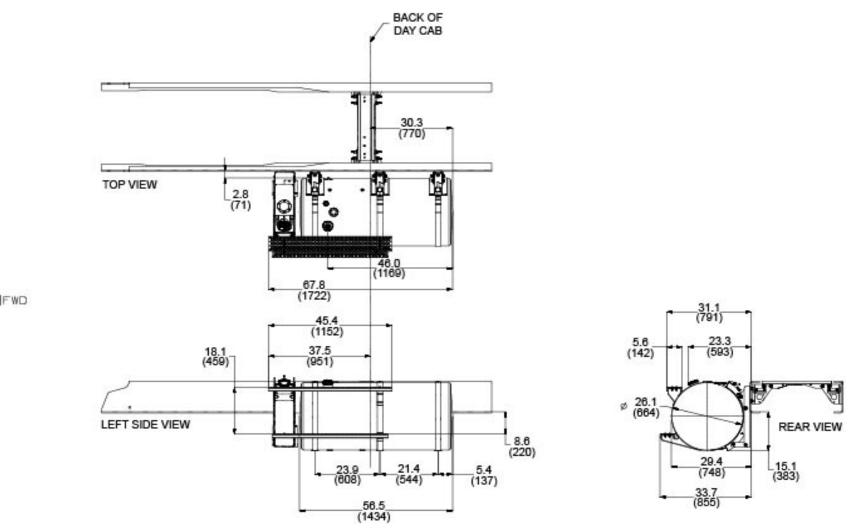
70 Gallon; 26", Mounted Left Side Under Cab (15SWG, 15SWE)



HX_SBA_115BBC_15SWG_15SWE

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

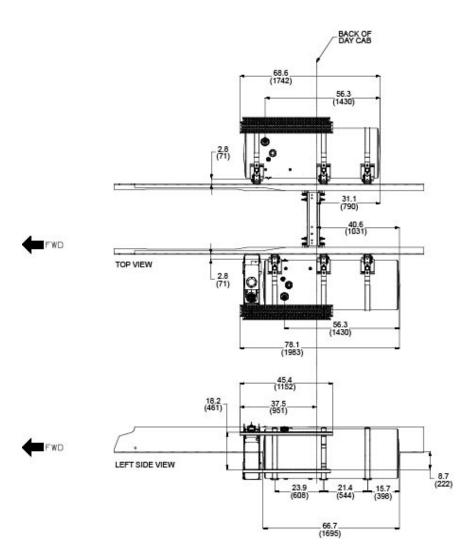
100 Gallon; 26", Mounted Left Side Under Cab (15SWH, 15SJR)



HX_SBA_115BBC_15SWH_15SJR

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SBA (115 BBC)


120 Gallon; 26", Mounted Left Side Under Cab (15SWJ, 15SWK)

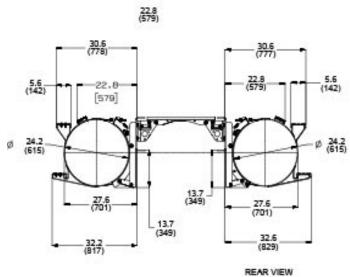
HX_SBA_115BBC_15SWJ_15SWK

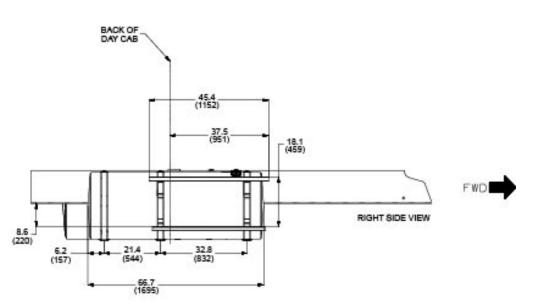
DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWP, 15DWR)

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC) JUNE 2016 — 15-25

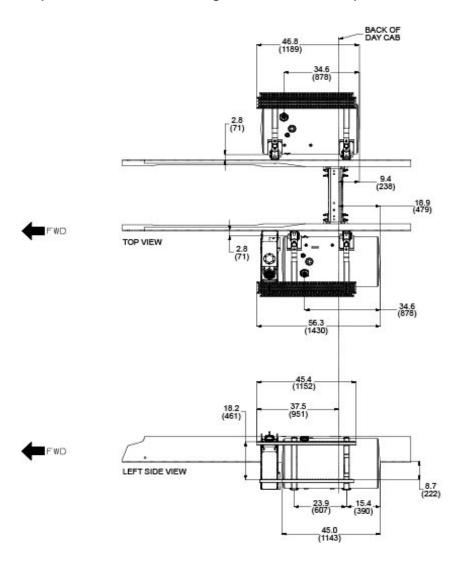

HX_SBA_115BBC_15DWP_15DWR_top_left


Rear and Right Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (115 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWP, 15DWR)



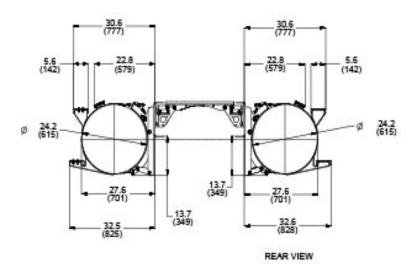
HX_SBA_115BBC_15DWP_15DWR_rear_right

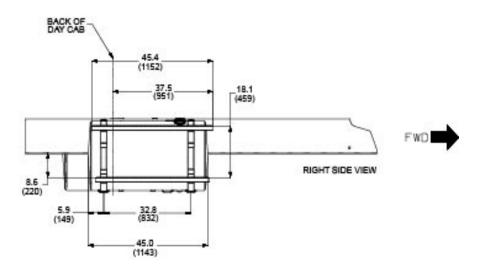
DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWU, 15DWV)

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

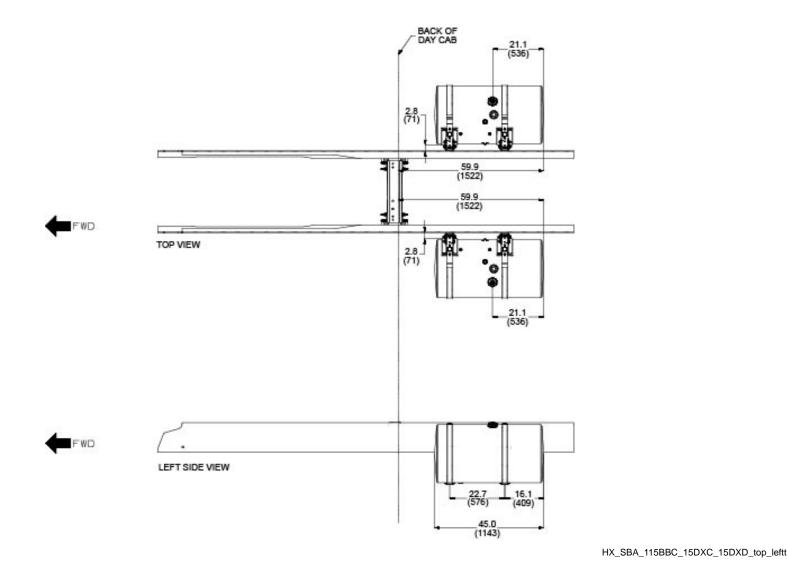



FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

JUNE 2016 — 15-28

DUAL FUEL TANK & STEP LOCATIONS - SFA (115 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWU, 15DWV)



Rear and Right Side View

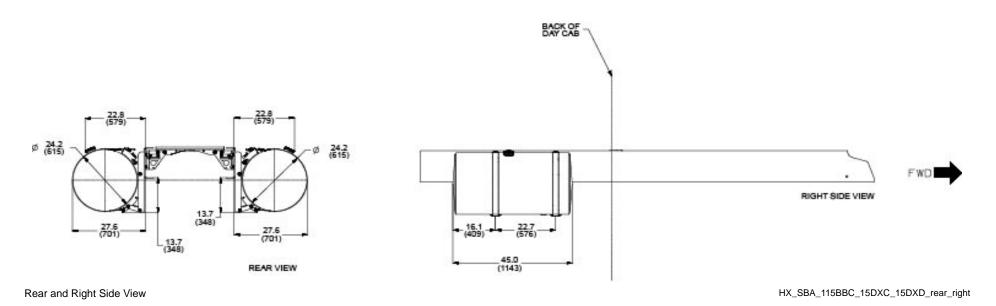
HX_SBA_115BBC_15DWU_15DWV_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXC, 15DXD)

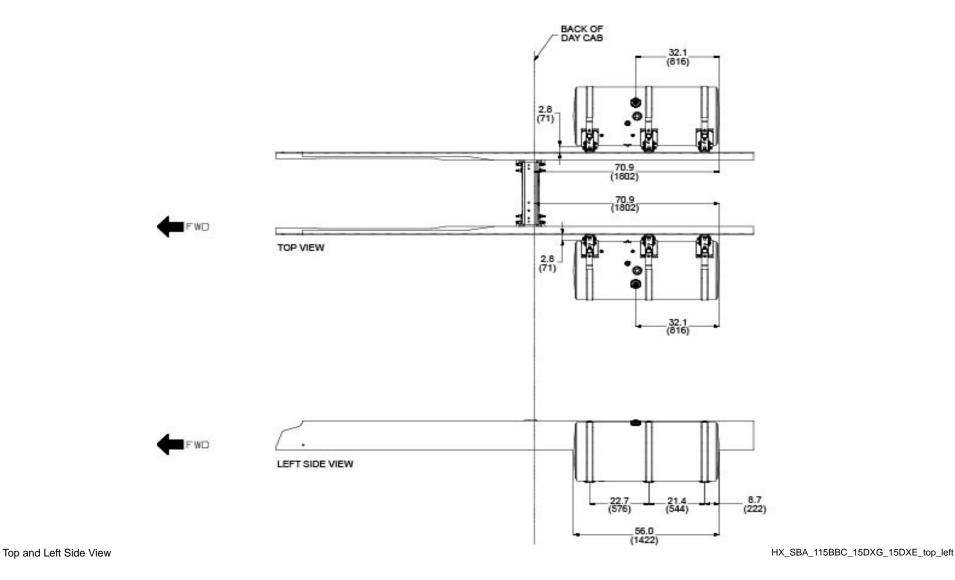
Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)



FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

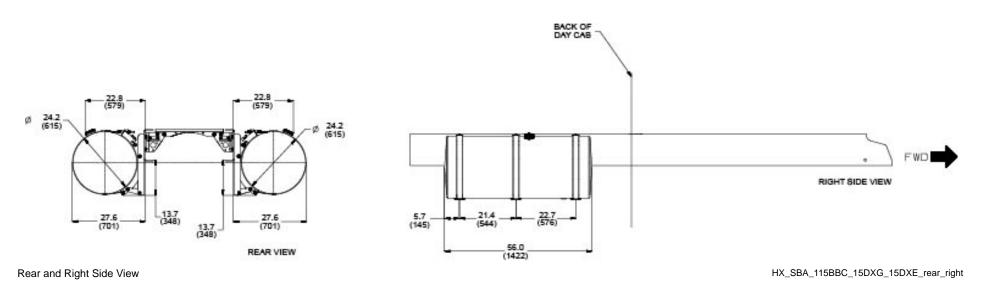
JUNE 2016 — 15-30


DUAL FUEL TANK & STEP LOCATIONS - SFA (115 BBC)

Dual 80 Gallon (160 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXC, 15DXD)

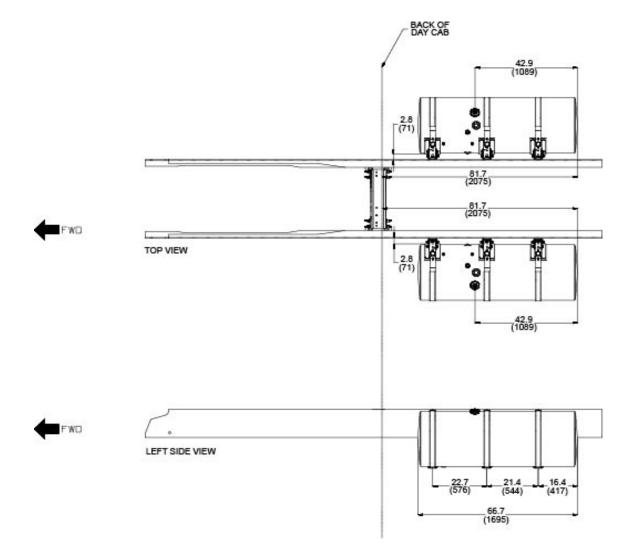
DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

Dual 100 Gallon (200 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXG, 15DXE)


FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

JUNE 2016 — 15-32

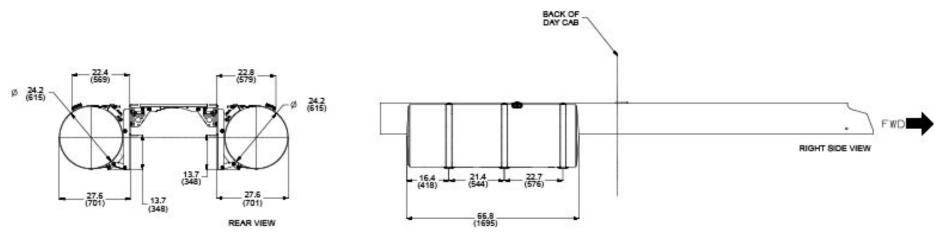

DUAL FUEL TANK & STEP LOCATIONS - SFA (115 BBC)

Dual 100 Gallon (200 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXG, 15DXE)

DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXJ, 15DXH)

Top and Left Side View

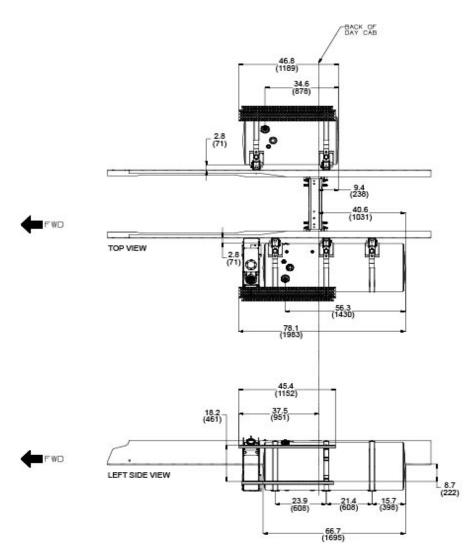

JUNE 2016 — 15-33

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (115 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXJ, 15DXH)

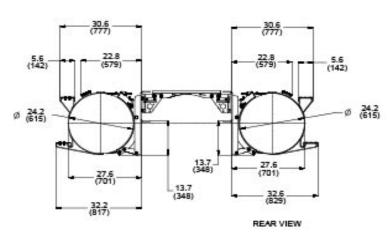


Rear and Right Side View

HX_SBA_115BBC_15DXJ_15DXH_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

Dual 80 Gallon-right & 120 Gallon-left (200 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DZB, 15DZC)

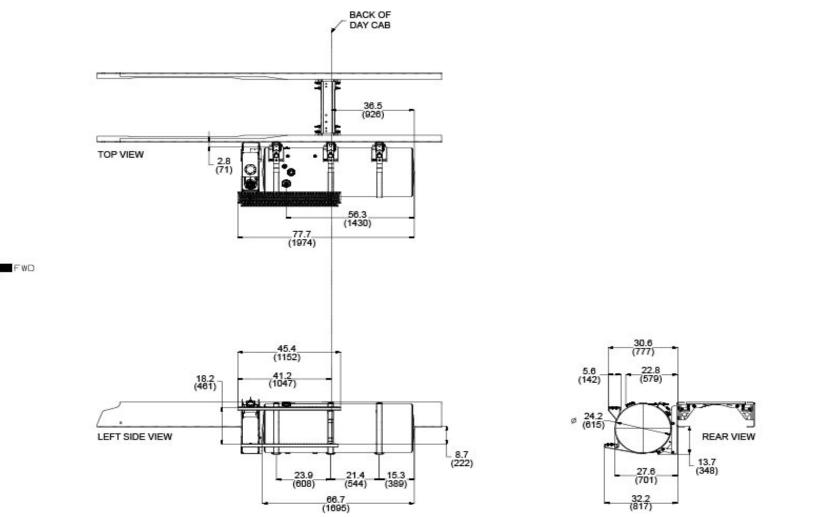

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC) HX_SBA_115BBC_15DZB_15DZC_top_left

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (115 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (115 BBC)

Dual 80 Gallon-right & 120 Gallon-left (200 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DZB, 15DZC)

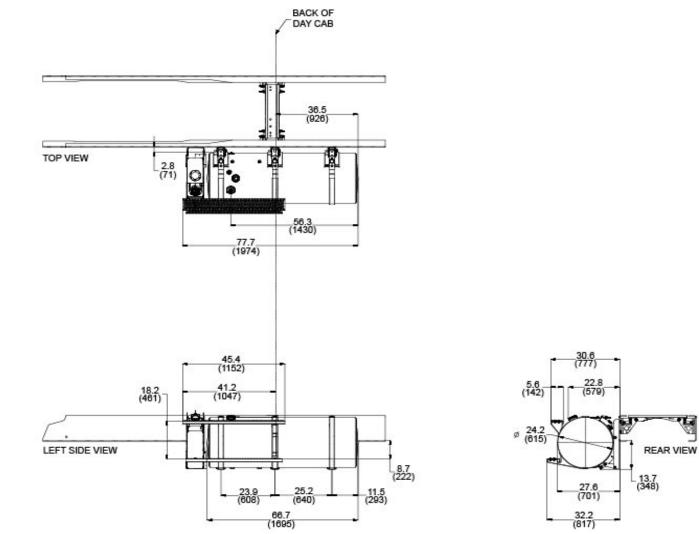


Rear and Right Side View

HX_SBA_115BBC_15DZB_15DZC_rear_right

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

120 Gallon; 24", Mounted Left Side Under Cab (15SSG, 15SMZ not with 07BJX)

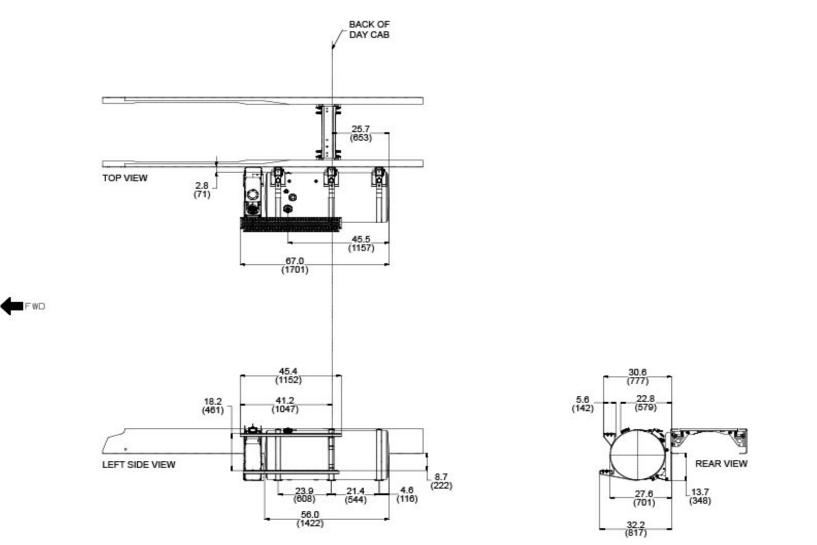


FWD

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

120 Gallon; 24", Mounted Left Side Under Cab (15SSG, 15SMZ with 07BJX)



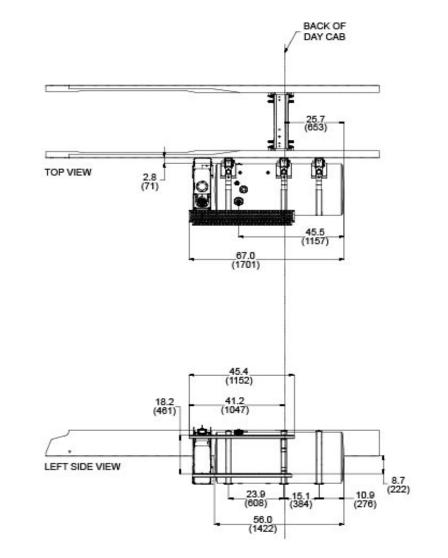
HX_SBA_119BBC_15SSG_15SMZ_W_7BJX

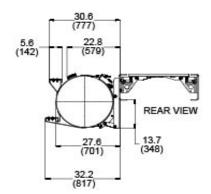
रम्ब

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

100 Gallon; 24", Mounted Left Side Under Cab (15SSK, 15SHC not with 07BJX)

HX_SBA_119BBC_15SSK_15SHC_N_7BJX

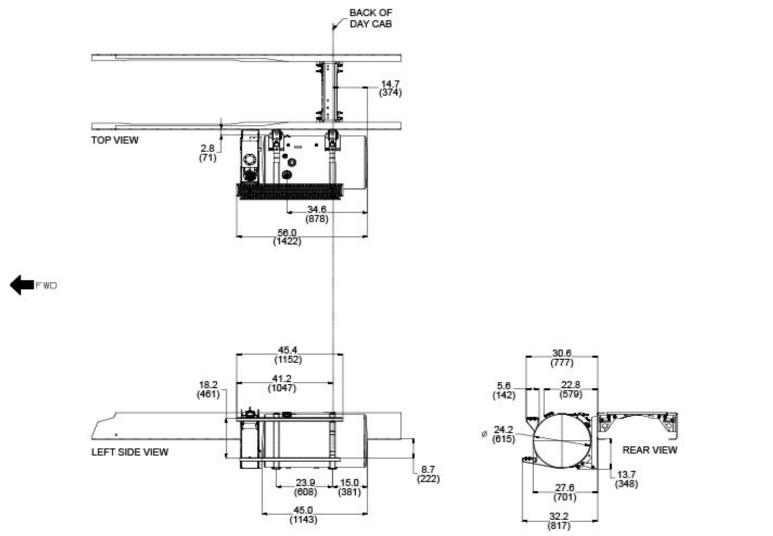

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)


FWD

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

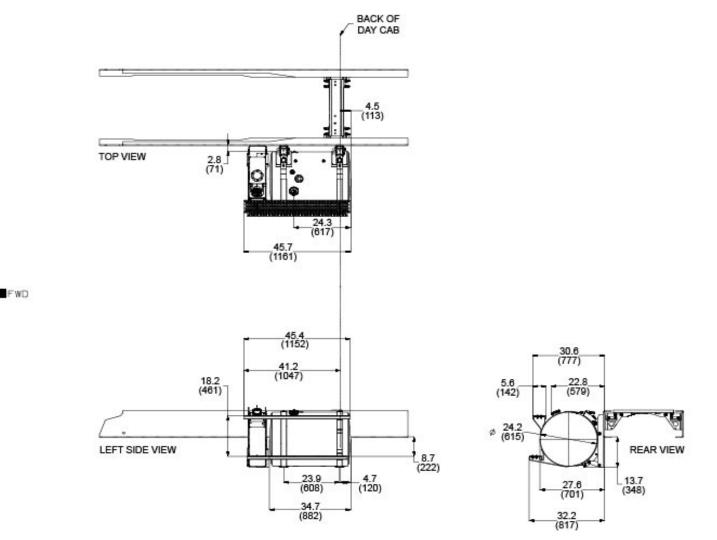
100 Gallon; 24", Mounted Left Side Under Cab (15SSK, 15SHC with 07BJX)



HX_SBA_119BBC_15SSK_15SHC_W_7BJX

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

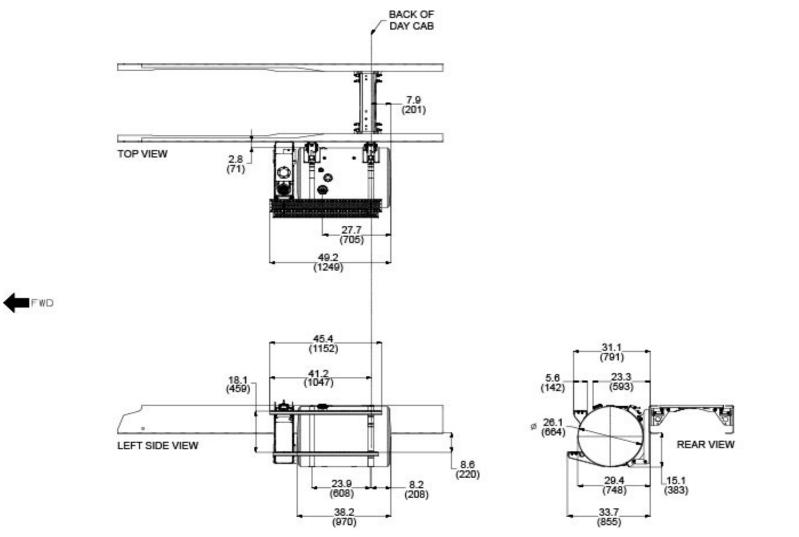
80 Gallon; 24", Mounted Left Side Under Cab (15SSL, 15SGL)


HX_SBA_119BBC_15SSL_15SGL

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

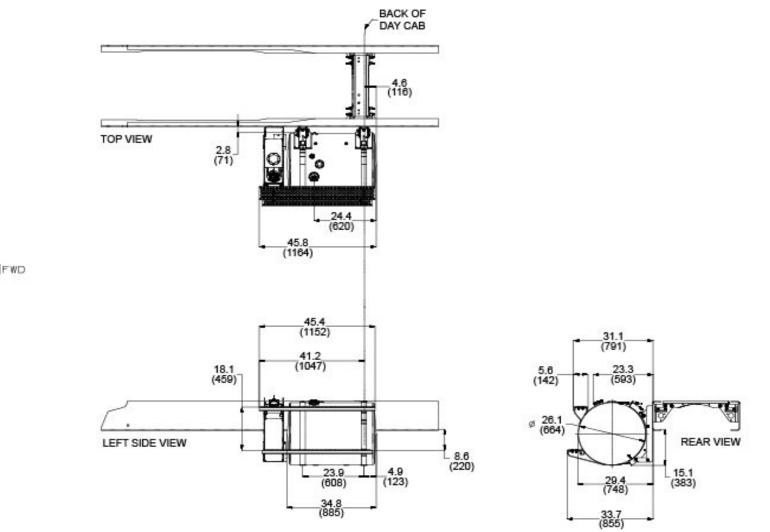
SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)


60 Gallon; 24", Mounted Left Side Under Cab (15SSM, 15SSN)

HX_SBA_119BBC_15SSM_15SSN

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

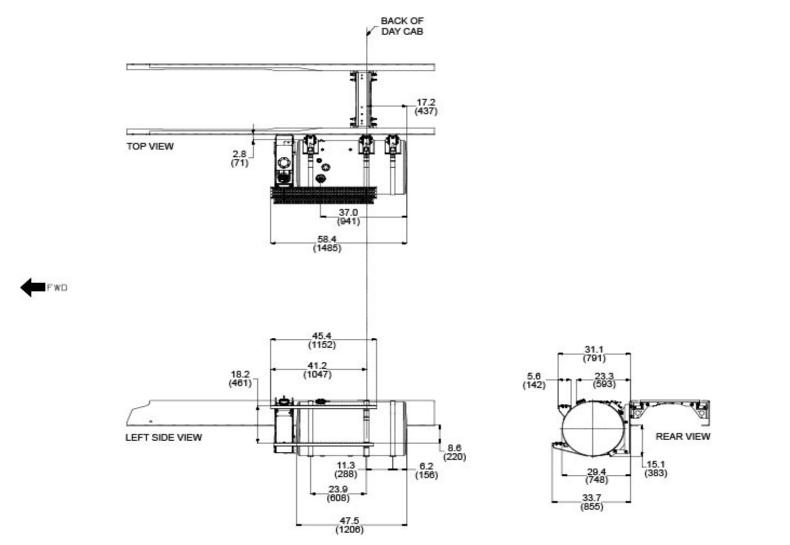
80 Gallon; 26", Mounted Left Side Under Cab (15SWD, 15SJZ)


HX_SBA_119BBC_15SWD_15SJZ

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

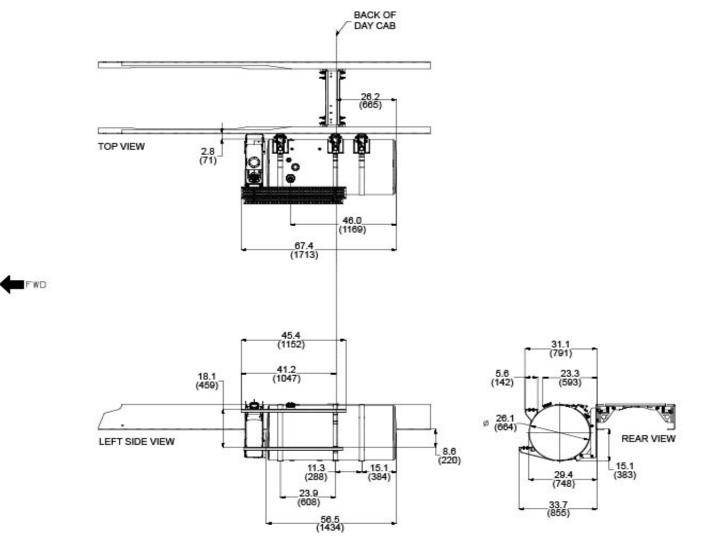
SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)


70 Gallon; 26", Mounted Left Side Under Cab (15SWG, 15SWE)

HX_SBA_119BBC_15SWG_15SWE

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

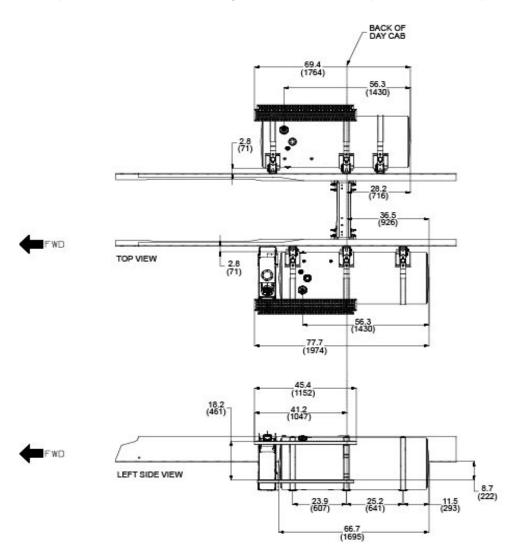
100 Gallon; 26", Mounted Left Side Under Cab (15SWH, 15SJR)



HX_SBA_119BBC_15SWH_15SJR

FUEL TANKS • 15 SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

SINGLE FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

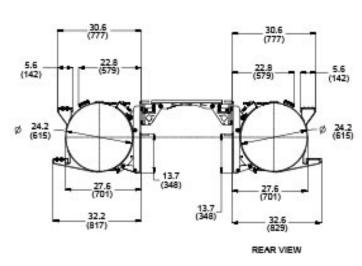

120 Gallon; 26", Mounted Left Side Under Cab (15SWJ, 15SWK)

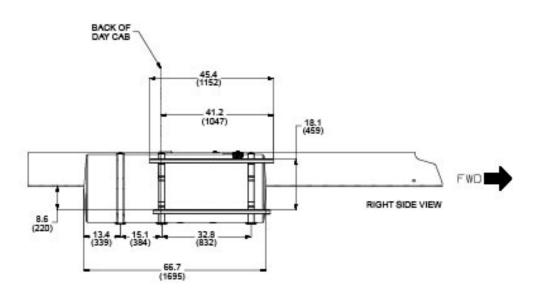
HX_SBA_119BBC_15SWJ_15SWK

DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWP, 15DWR)

Top and Left Side View

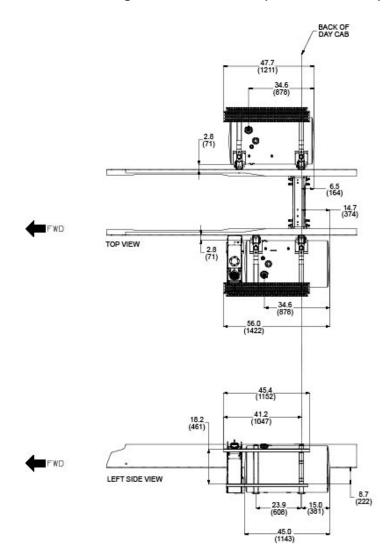

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC) JUNE 2016 — 15-47


HX_SBA_119BBC_15DWP_15DWR_top_left

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 120 Gallon (240 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWP, 15DWR)



Rear and Right Side View

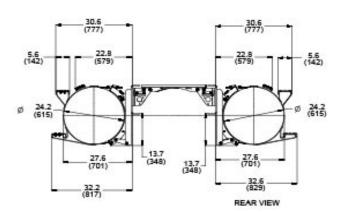
HX_SBA_119BBC_15DWP_15DWR_rear_right

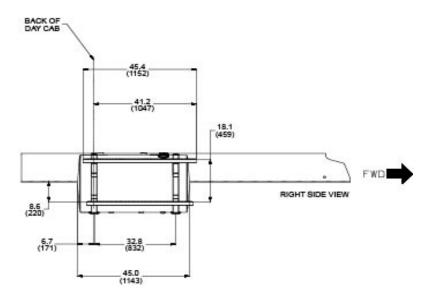
DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 80 (160 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWU, 15DWV)

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

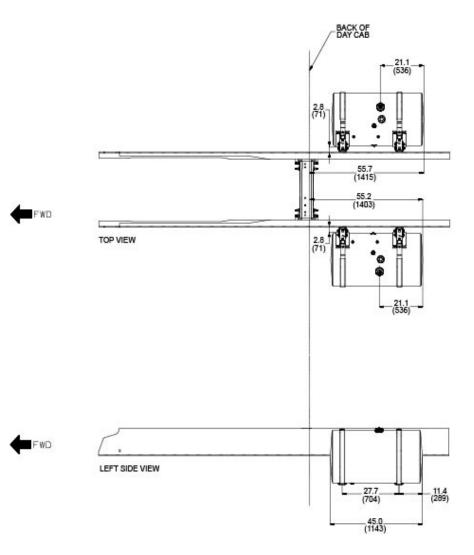



HX_SBA_119BBC_15DWU_15DWV_top_leftt

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (119 BBC)

Dual 80 (160 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DWU, 15DWV)



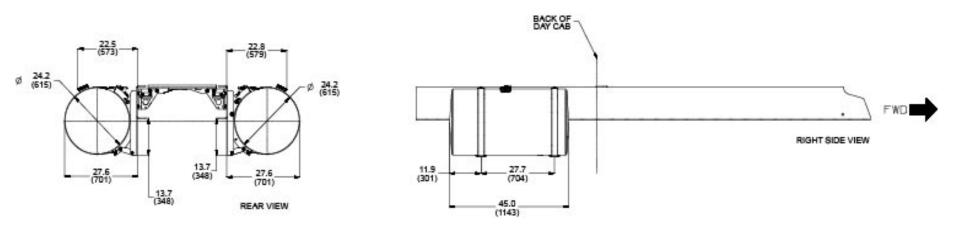
Rear and Right Side View

HX_SBA_119BBC_15DWU_15DWV_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 80 (160 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXC, 15DXD)

Top and Left Side View

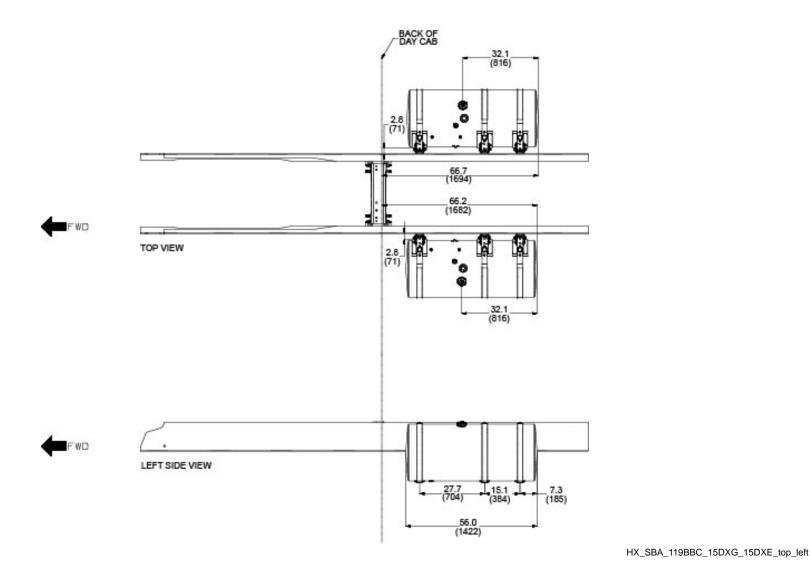

HX_SBA_119BBC_15DXC_15DXD_top_left

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (119 BBC)

Dual 80 (160 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXC, 15DXD)

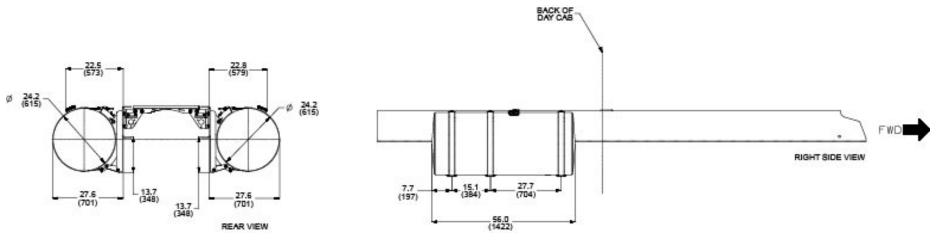


Rear and Right Side View

HX_SBA_119BBC_15DXC_15DXD_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 100 (200 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXG, 15DXE)

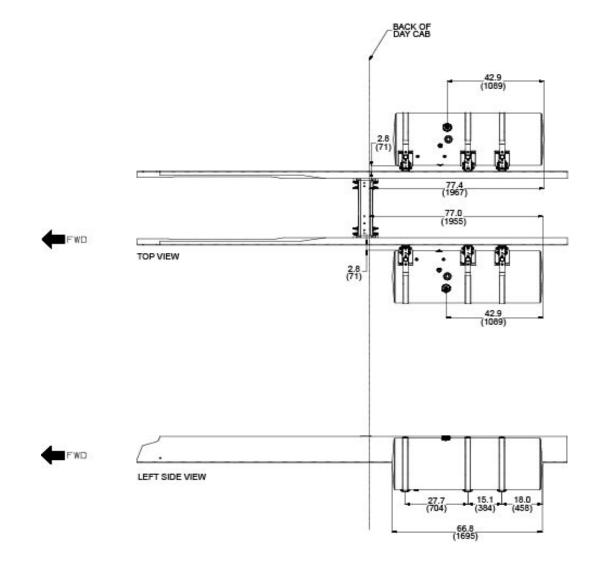

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (119 BBC)

Dual 100 (200 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXG, 15DXE)

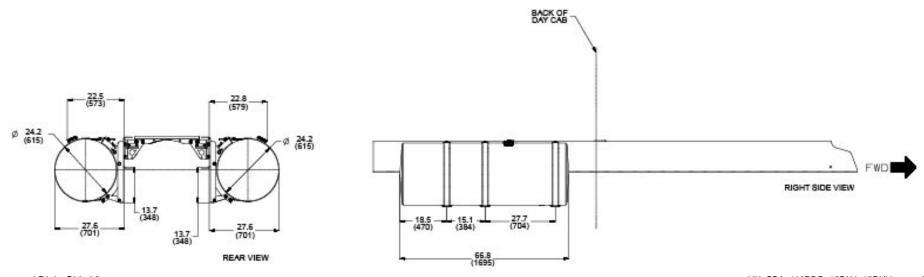


Rear and Right Side View

HX_SBA_119BBC_15DXG_15DXE_rear_right

DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 120 (240 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXJ, 15DXH)

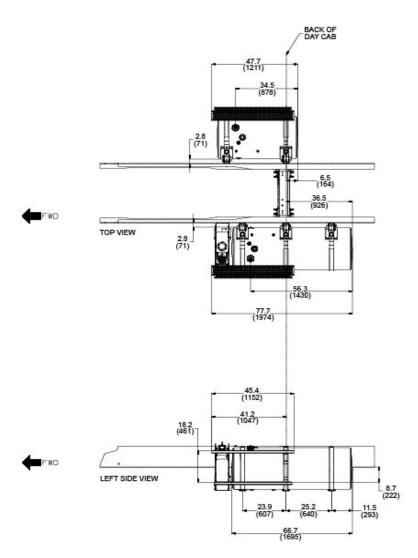

HX_SBA_119BBC_15DXJ_15DXH_top_left

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

DUAL FUEL TANK & STEP LOCATIONS - SFA (119 BBC)

Dual 120 (240 Gallon Total), 24", Mounted Left & Right Side Back of Cab (15DXJ, 15DXH)



Rear and Right Side View

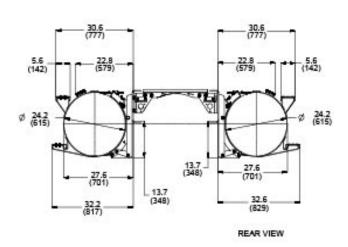
HX_SBA_119BBC_15DXJ_15DXH_rear_right

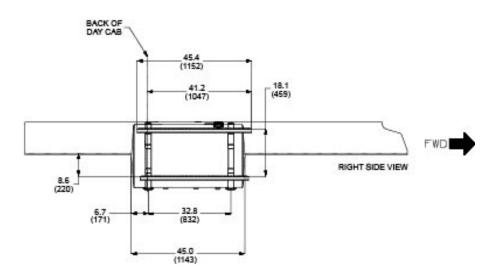
DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

Dual 80 Gallon-Left & 120 Gallon-Right (200 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DZB, 15DZC)

Top and Left Side View

FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC) JUNE 2016 — 15-57

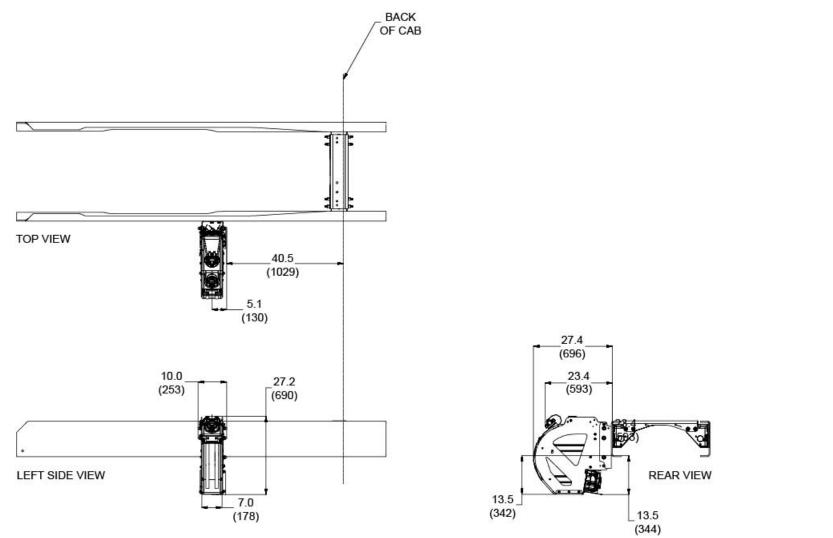

HX_SBA_119BBC_15DZB_15DZC_top_left


FUEL TANKS • 15 DUAL FUEL TANK & STEP LOCATIONS - SBA (119 BBC)

JUNE 2016 — 15-58

DUAL FUEL TANK & STEP LOCATIONS - SFA (119 BBC)

Dual 80 Gallon-Left & 120 Gallon-Right (200 Gallon Total), 24", Mounted Left & Right Side Under Cab (15DZB, 15DZC)

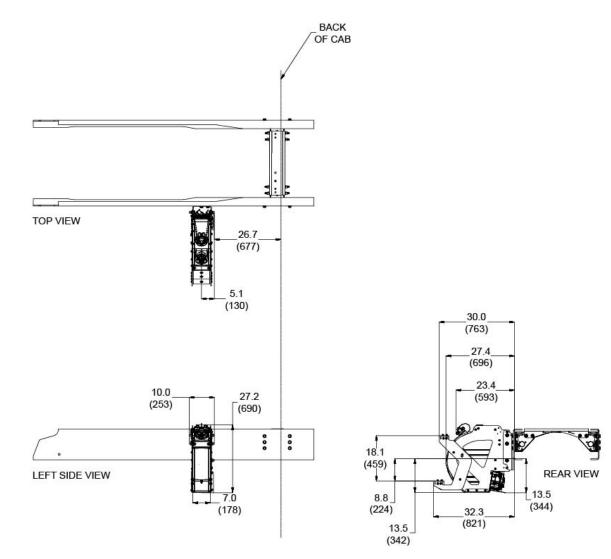


Rear and Right Side View

HX_SBA_119BBC_15DZB_15DZC_rear_right

DEF TANK LOCATION (114 BBC)

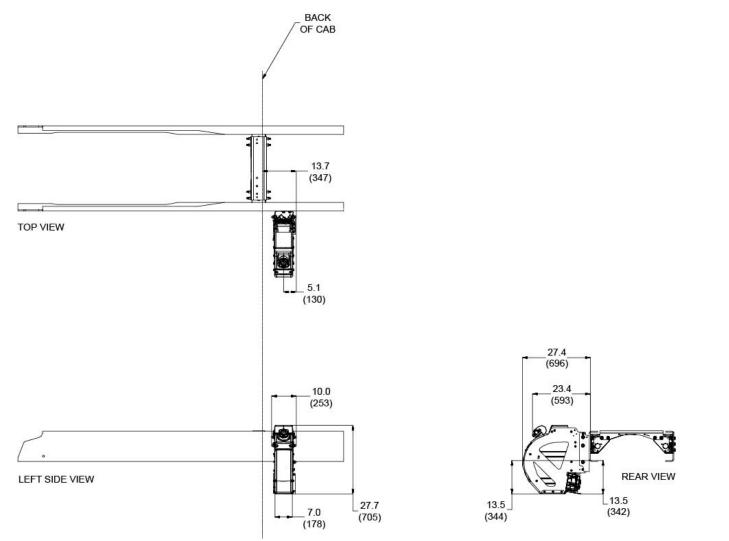
9.5 Gallon; Frame Mounted Left Side Under Cab (15DYP)


HX_SFA_114_Def_Tank_15DYP

HX[™] SERIES SERIES BODY BUILDER

FUEL TANKS • 15 DEF TANK LOCATION (115 BBC)

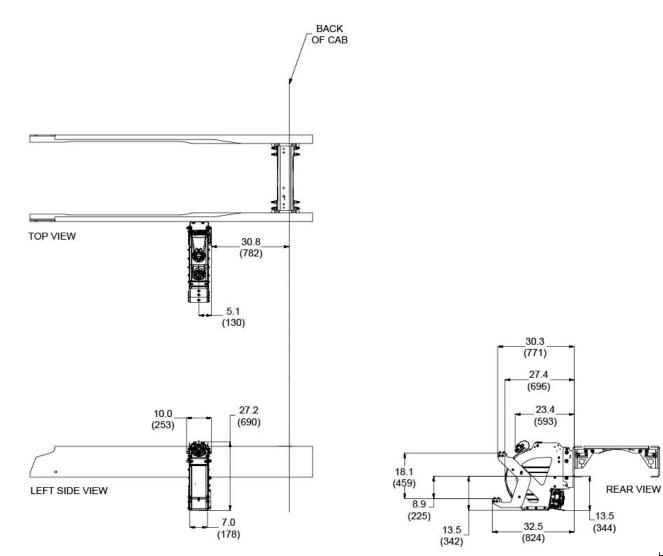
DEF TANK LOCATION (115 BBC)


9.5 Gallon; Frame Mounted Left Side Under Cab (15DYP)

HX_SBA_115_Def_Tank_15DYP

DEF TANK LOCATION (115 BBC)

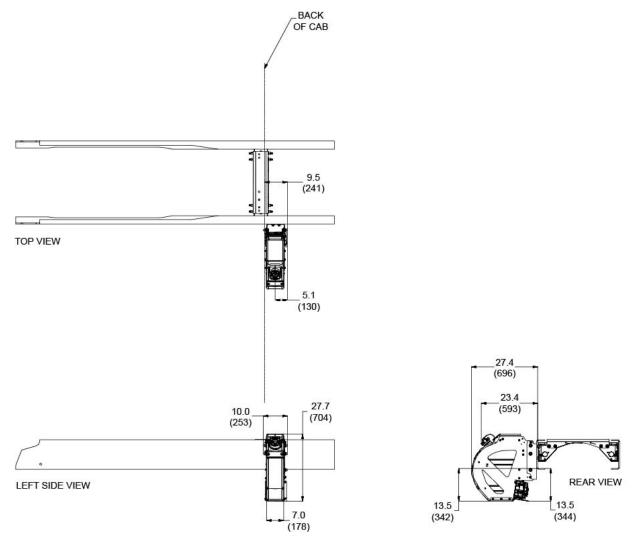
9.5 Gallon; Frame Mounted Left Side Back of Cab (15DYR)


HX_SBA_115_Def_Tank_15DYR

FUEL TANKS • 15 DEF TANK LOCATION (115 BBC)

FUEL TANKS • 15 DEF TANK LOCATION (119 BBC)

DEF TANK LOCATION (119 BBC)


9.5 Gallon; Frame Mounted Left Side Under Cab (15DYP)

HX_SBA_119_Def_Tank_15DYP

DEF TANK LOCATION (119 BBC)

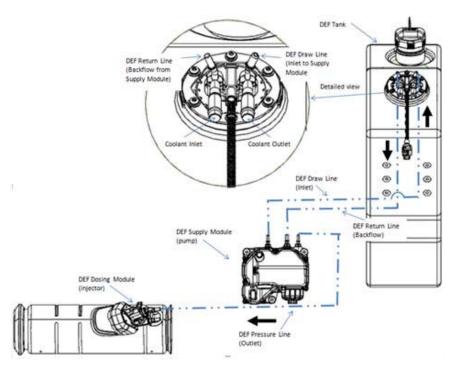
9.5 Gallon; Frame Mounted Left Side Back of Cab (15DYR)

HX_SBA_119_Def_Tank_15DYR

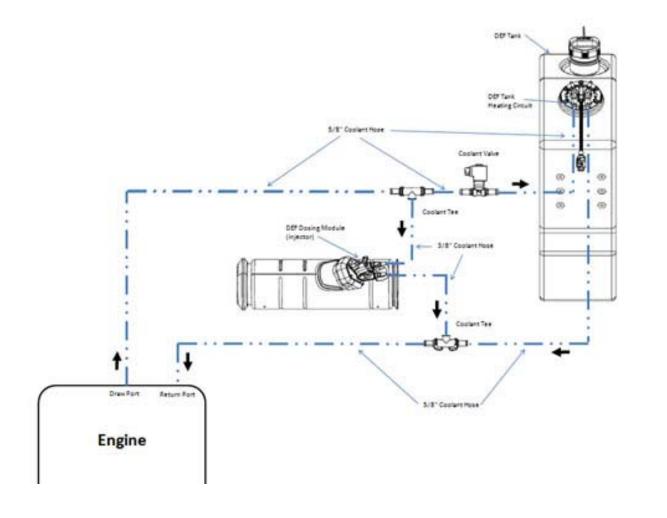
FUEL TANKS • 15 DEF TANK LOCATION (119 BBC)

FUEL TANKS • 15 DEF System and Aftertreatment Information

DEF System and Aftertreatment Information


The following section is intended to give you information regarding the exhaust and aftertreatment systems on International chassis.

International trucks equipped with 2013 engines utilize Selective Catalyst Reduction (SCR). SCR is a chemical reaction in which Diesel Exhaust Fluid (DEF) is injected into the exhaust downstream of the oxidation catalyst where it converts nitrous oxide into ammonia and simpler nitrogen oxides. For more information on the specific details of how SCR works, please refer to this fact sheet from USEPA:


http://www.epa.gov/ttn/catc/dir1/fscr.pdf

DEF System Schematic

On most International chassis the DEF Supply Module (or Pump) is integrated into the DEF tank. Navistar, Inc. does not authorize or endorse relocation of the DEF Supply Module. The following schematic details how the DEF lines route to the after-treatment system.

DEF will freeze at approximately 11°F. In order to thaw DEF all tanks are heated with engine coolant. The following schematic shows the routing of the lines. The coolant lines that run to and from the SCR system must not be tampered with, or used for a source of heat and/or cooling for other components on the chassis. It is critical that the system is not compromised in any manner.

FUEL TANKS • 15 DEF System and Aftertreatment Information

FUEL TANKS • 15 DEF System and Aftertreatment Information

General Guidelines for DEF System

The installation of the DEF tank is critical to the operation of the SCR system. Navistar, Inc. does not recommend relocating the DEF tank but understands there are applications and body installations that may require it. The guidelines below must be strictly followed by any entity relocating the DEF tank. Failure to follow the guidelines completely and accurately may result in loss of engine power or engine shutdown.

Since Navistar, Inc. cannot ascertain each possible DEF tank mounting configuration, the body builder and/or person modifying the attachment of the DEF tank assembly have sole responsibility for correctly mounting the DEF tank assembly, assuring mounting integrity and preventing structural damage to the DEF tank assembly for a given configuration. Additionally, body builder and/or persons modifying the vehicle must ensure that the final vehicle configuration conforms to all pertinent federal, state, and local requirements, including but not limited to safety and emissions requirements.

Navistar, Inc. has multiple DEF tank sizes to meet various applications. The DEF tank volume is sized according to regulatory stipulations that ensure an adequate supply of urea is available on-board each chassis to which an SCR system is fitted. DEF the tank volume must not be altered or reconfigured after the truck has been delivered from the factory.

Total DEF capacity must meet or exceed a given percentage of the usable fuel capacity of the truck based on engine size (see table 1 below) The calculation to determine DEF capacity is:

Minimum DEF Tank Volume = Useable Fuel Capacity (gal) x % in table 1

Example: For medium duty truck with 200 useable gallons of fuel that is not centrally fueled, the equation is

DEF required = 200 x 0.06 = 12 gallons or more of DEF

Truck Class	Percent Calculator
Medium (Long Haul)	6.0%
Heavy (Long Haul)	7.4%
Medium (Centrally Fueled Daily)	3.0%
Heavy (Centrally Fueled Daily)	3.7%

Navistar, Inc. approved DEF hoses are required when retro fitting for system to function properly. The use of unapproved hoses for DEF lines will void warranty and may cause loss of engine power or engine shutdown. The DEF pump (or Supply Module) cannot be relocated from the DEF tanks.

Installation Requirements and Dimensions for DEF System

When relocating any DEF system components, the locations must meet the guidelines below. Failure to comply may cause non-conformance to EPA standards and may result in engine power loss or shutdown. Body Builders must not modify (including altering, substituting, and relocating) the DPF/SCR catalysts and the pre DPF/SCR exhaust piping. The downstream SCR catalyst exhaust may be modified, however using smaller diameter piping or piping with numerous bends is not recommend as the backpressure specification of the system may be exceeded causing engine power loss or shutdown conditions.

DEF line routing relative heights: In order to ensure proper functionality of the DEF system, the height differences in the guidelines below must be followed during the line routing and component placement.

With all relocating procedures, general clearances and routing guidelines must be followed.

When relocating the components the maximum pressure DEF line length, from the Supply Module to the Dosing Module, is 3 meters (118").

Maintain a minimum of 4" clearance to shielded exhaust components and 6" to unshielded exhaust components when routing DEF lines to prevent possible melting.

If the DEF tank is relocated, the coolant line will need to be modified. If the tank is moved fore or aft along the chassis (i.e. closer or further to the engine) it will be necessary to remove or add length to the coolant lines and maintain the original routing path. If additional length of coolant line is required the installation must be located in a straight section of the existing coolant routing lines. The clipping locations for the coolant line must not be changed. This process will minimize the change in coolant flow by minimizing changes in restrictions. Changes in restriction are added with excessive line length and additional bends. Work with your local Navistar, Inc. dealer if you are unsure about coolant line modifications.

Modifications of the DEF Injection coolant lines are not allowed. Movement of the DEF coolant tee's and coolant valve are not allowed.

FUEL TANKS • 15 DEF System and Aftertreatment Information

JUNE 2016 — 15-68

Measurement Reference Points

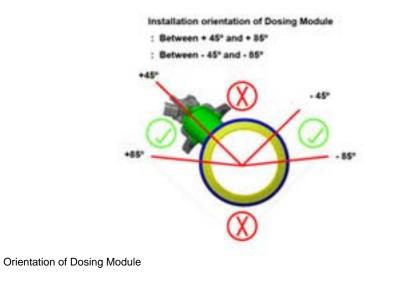
For all relocation procedures, the measurement point referenced in the guideline are taken from the following specific points.

Supply Module: The supply module is commonly called the pump. The measurement point on the supply module is the top of the DEF fluid pressure line.

Measurement Location of DEF Supply Module (Pump)

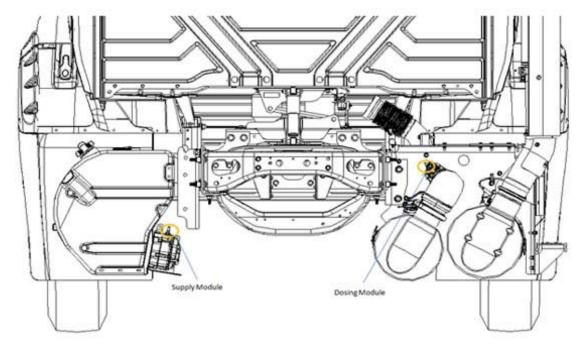
15_0202

Dosing Module: The dosing module is commonly called an injector. The dosing module is located on the SCR dosing pipe (mixing pipe) which is between the DPF and SCR catalyst. The measurement point on the dosing module is the fluid pressure line connector.


Measurement Location of DEF Dosing Module (Injector)

15_0203

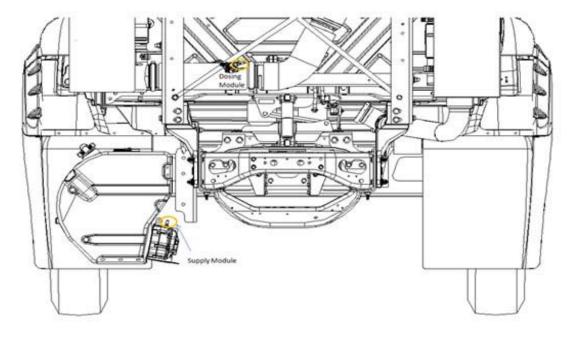
FUEL TANKS • 15 DEF System and Aftertreatment Information


FUEL TANKS • 15 DEF System and Aftertreatment Information

The following relocation guidelines are dependent on exhaust configuration and DEF tank type and location. The Dosing Module should never need to be relocated, however if it is removed for any reason, it is critical that the module be reinstalled at the correct orientation. Figure 6 below illustrates the correct installation orientations. The angle references the vertical plane.

15_0204

Right Hand under Cab DPF and SCR (switchback) DEF Tanks (continued)



Heavy Duty Severe Service

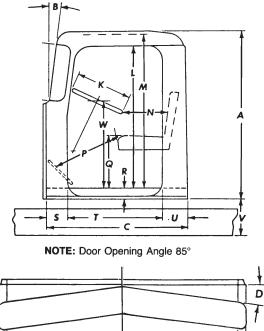
15_0206

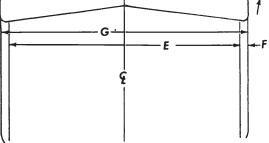
FUEL TANKS • 15 DEF System and Aftertreatment Information

Vertical/Vertical DPF and SCR DEF Tanks

Heavy Duty Vertical/Vertical

15_0209

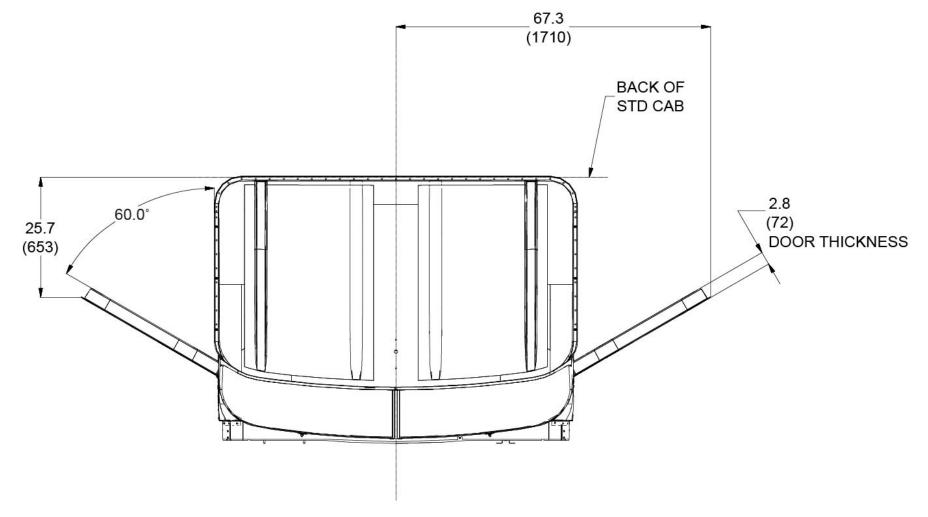

The height differential between the supply module and dosing module cannot exceed one meter. The supply module is integrated into the DEF tank assembly, separation of the module from the tank is not allowed. When relocating the components the maximum pressure DEF hose length, from Supply module to Dosing Module, is 3 meters (118").


Routing to the Dosing Module (Injector) to Create Trap

It is important for the function of the dosing module to ensure that the dosing module is not routed downhill (below) of DEF lines or components. If this is unavoidable (for example on RH under exhaust systems) or Horizontal (Series) Exhaust a routing trap must be installed. A minimum of 12" of line length must be routed below the dosing module in order to catch any leftover DEF when system is purged.

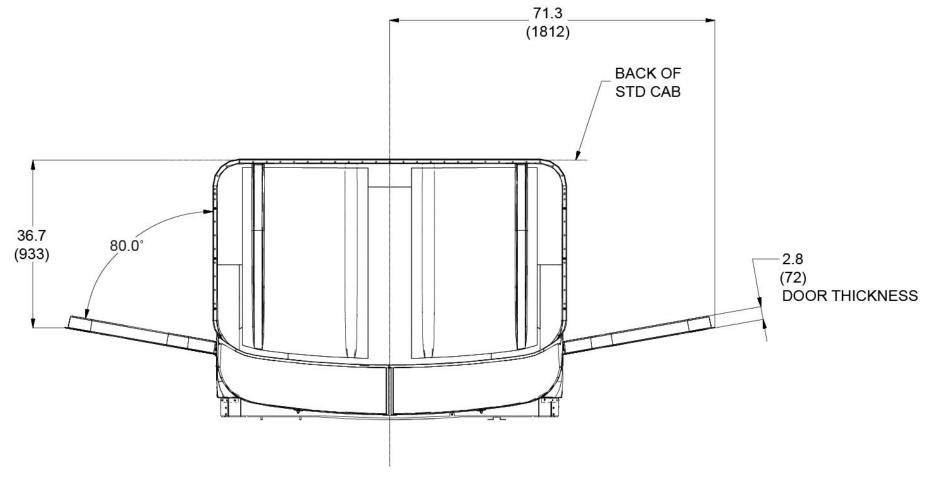
CAB Cab Dimensions

Standard Cab


Key	Description	Dimension (Inches)
А	Cab Height	64.77
В	Windshield Angle	22° at Center; 19° at A-Pillar
С	Inside - Cowl to Back of Cab	52.0
E	Interior Width	70.0
F	Door Thickness	3.0
G	Outside Cab Width	76.0
К	Steering Wheel Diameter	18.0
L	Floor to Top of Door	52.50
М	Floor to Headliner	57.75
Ν	Steering Wheel Rim to Seat Back	19.38
Р	Pedal to Seat	23.58
Q	Floor to Seat	18.5
R	Floor to Bottom of Cab	4.6
S	Cowl to Door	8.5
Т	Door Width	35.0
U	Door to Back of Cab	8.5
V	Bottom of Cab to Bottom of Frame	20.9
W	Floor to Steering Wheel Center	32.2

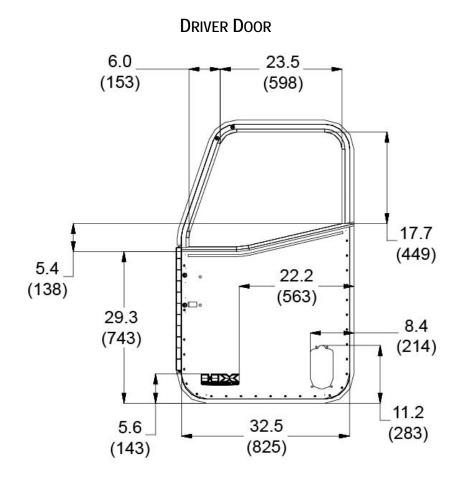
16-0138

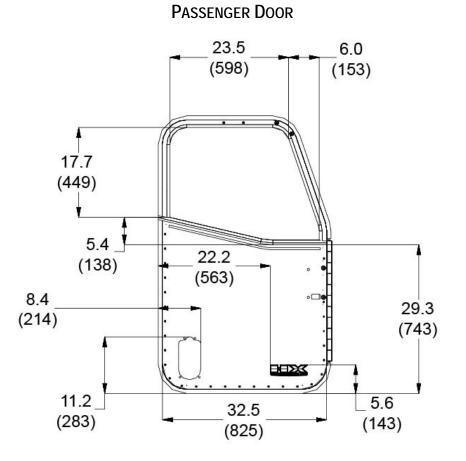
HX[™] SERIES SERIES BODY BUILDER


Cab • 16 Door Swing (with External Air Cleaner)

Door Swing (with External Air Cleaner)

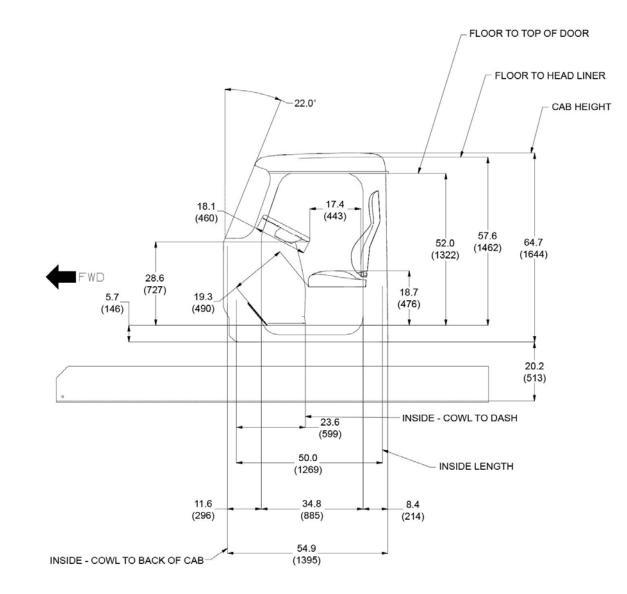
HX_Std_Cab_Door_Swing_60-Deg_w_Air_Cleaner

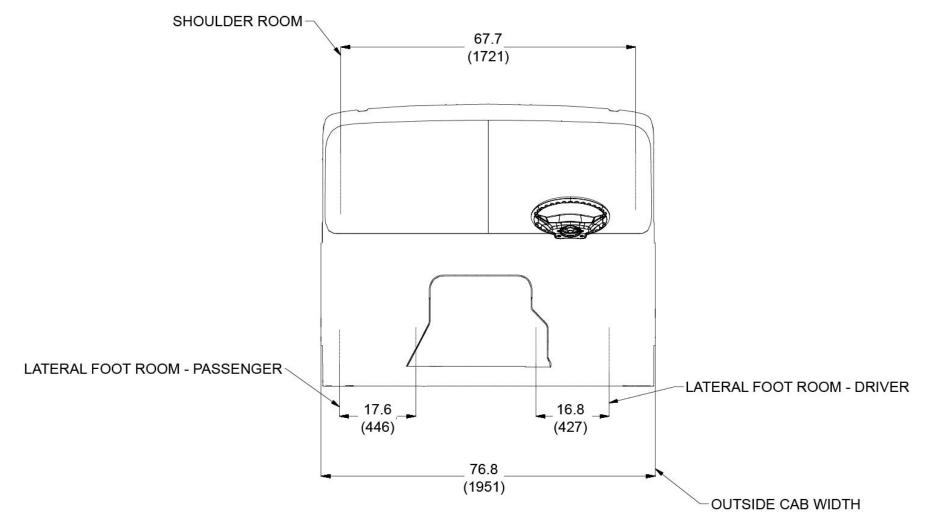

Door Swing (without External Air Cleaner)



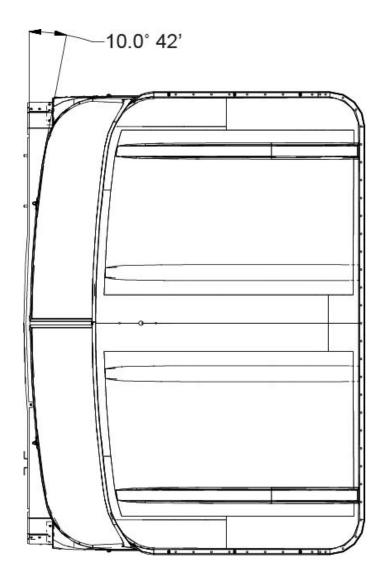
HX_Std_Cab_Door_Swing_80-Deg_nw_Air Cleaner

CAB • 16 Standard Cab Door Schematics


Standard Cab Door Schematics


HX_Std_Driver_Door & HX_Std_Passenger_Door

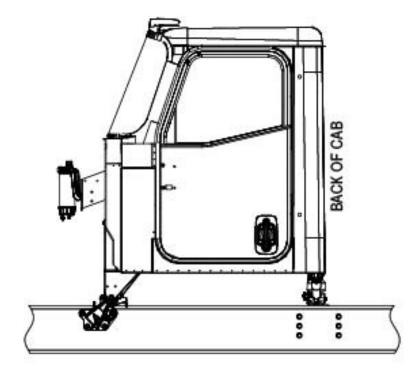
Standard Cab Left Side View

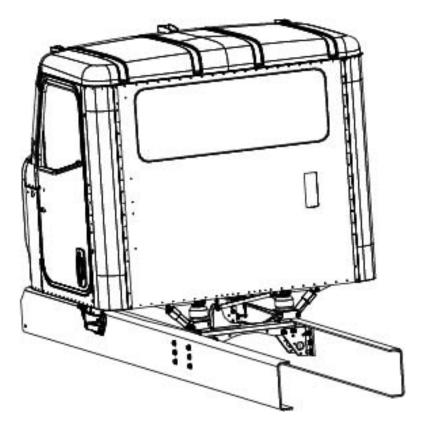

HX_Std_Cab_lsv

Standard Cab Front View

HX_Std_Cab_Front

Standard Cab Top View




HX_Std_Cab_topview

CAB • 16 Rear Cab Suspension

Rear Cab Suspension

Day Cab

HX _rear_cab_susp

Air Conditioning System Modifications

All Models

The HVAC system provided with International[®] DuraStar[®], WorkStar[®], TranStar[®] and TerraStar[®] Series should not be modified. NO additional components should be added to the factory installed HVAC system as it is delivered from the manufacturer. If additional air conditioning capacity is needed, a completely independent system should be added to handle the additional load requirements of the Body Builder. There are additional costs for a second system; it would however, provide for optimal performance from both HVAC systems.

There are several reasons why HVAC system modifications are not permitted.

- The factory installed HVAC system is *optimized* for the evaporator, condenser and compressor combination on the vehicle. To introduce an additional evaporator (or other components) into the system will create an imbalance and unsatisfactory performance.
- The Refrigerant Control and Diagnostics (RCD) software that resides in the vehicle's body computer is designed to monitor the factory installed AC system only. Adding any additional equipment or components to the original air conditioning system will introduce conditions that the RCD software will interpret as out-of-specification conditions and cause faults to be logged.
- The factory compressor clutch is cycled by the RCD software residing in the ESC of the vehicle. Modification of this control system to add an auxiliary system could result in damage to other vehicle components.
- Since the HVAC system has been optimized for the factory components, there is no extra condenser capacity available for an auxiliary evaporator.

CAB • 16 AIR CONDITIONING SYSTEM MODIFICATIONS

JUNE 2016 — 16-10

A NAVISTAR COMPANY

Vavistar, Inc. 2701 Navistar Drive Lisle, IL 60532

18